IOWA STATE UNIVERSITY

Digital Repository

Iowa State University Capstones, Theses and

Graduate Theses and Dissertations . )
Dissertations

2011

Three essays on commodity futures and options
markets

Na Jin
Towa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

b Part of the Economics Commons

Recommended Citation

Jin, Na, "Three essays on commodity futures and options markets" (2011). Graduate Theses and Dissertations. 10377.
https://lib.dr.iastate.edu/etd /10377

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at lowa State University
Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University

Digital Repository. For more information, please contact digirep@iastate.edu.

www.manharaa.com



http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/340?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/10377?utm_source=lib.dr.iastate.edu%2Fetd%2F10377&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

Three essays on commodity futures and options markets

by

Na Jin

A dissertation submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Economics

Program of Study Committee:
Dermot Hayes, Co-major Professor
Sergio Lence, Co-major Professor
Ananda Weerasinghe
Chad Hart

Helle Bunzel

Iowa State University
Ames, Iowa
2011
Copyright (©) Na Jin, 2011. All rights reserved.

www.manharaa.com



ii

DEDICATION

To Li Yu, Fiona and Olivia

www.manharaa.com




1ii

TABLE OF CONTENTS

LISTOFTABLES . . . . . . ittt ittt ettt et ettt i i ieeeennn vi
LISTOFFIGURES . . . . . . . ittt it iiie e vii
ACKNOWLEDGEMENTS . . . . . o ittt e i ittt e e e X
CHAPTER 1. OVERVIEW . . . ... ittt it iieeee e 1
CHAPTER 2. The Long-Term Structure of Commodity Futures. . . . . ... ... .... 3
2.1 Introduction . . . . . . . . L e e e 3
2.2 Schwartz’s Model and A Generalization . . . . . .. ... ... ... ......... 6
2.2.1 Price Mean Reversion . . . . . . . . .. . . .. 8

222 Seasonality . . . . . . . . . . e e e e e 9

2.3 Futures Pricing . . . . . . . . . e 10

2.4 Empirical Analysis . . . . . ... 11
2.4.1 Descriptionofthe Data . . . . . . . . . . . . .. . 13

2.4.2  Empirical Method . . . . . . . . . . . . ... 13

2.5 EstimationResults . . . . . .. .. L 16
2.5.1 Lean Hog Market . . . . . . . . . . . . . . e 16

2.5.2 Soybean Market . . . . . . . ... e 19

2.5.3  Comparison Among Models . . . . . . ... .. ... .. ... ... .. ... 23

2.5.4 95 Percent Credible Band of Futures Prices . . . . . . . . . . . .. ... ... 24

2.6 Conclusion . . . . .. ... e 27

2.7 AppendiX . ... 28
271 Appendix A . . .. L e 28

2.7.2  Appendix B

www.manharaa.com



v

273 Appendix C . . . . . . e 30

274 AppendixD . . ... 31
CHAPTER 3. Price Mean Reversion, Seasonality, and Options Markets ... ....... 36
3.1 Introduction . . . . . . . .. e e 36
3.2 Graphicalexamples . . . . . . . . 39
3.3 Schwartz’s model and generalization . . . . . . . ... ... ... ... ... ..., 41
3.3.1 Price mean reversion . . . . . . .. ..o e e e e e e 42

332 Seasonality . . . . . . . .. e 44

3.4 Futures and option pricing . . . . . . . . .. ..o e e e 45
3401 FutureSpricing . . . . . . . . .o e e e e e e 45

342 Optionpricing . . . . . . . i e e e e e e 46

3.5 Empirical analysis . . . . . . . .. e e e e 49
3.5.1  Empiricalmodel . . . . . . . ... 49

3.5.2 Descriptionofthedata . . . . . . . . . . . . .. 51

3.5.3 Empiricalmethod . . . . . . . . .. . e 52

3.6 Estimationresults . . . . . . . . ... 55
3.6.1 Lean hog market . . . . . . . . . . ... 55

3.6.2 Soybean market . . . . . . . ... 60

3.6.3 Crudeoilmarket . . . . . . . . . . ... e 64

377 Conclusion . . . . ... e 67
3.8 AppendiX . . ... e 68
3.8.1 Appendix A . . . . L 68

382 AppendixB . . . . ... 70

CHAPTER 4. Test of Samuelson Hypothesis in Commodity Futures Market: An Analysis

Using Term Structure Models . . . . . . . . 0 i i i i i it i ittt it et oo s a e san 73
4.1 Introduction . . . . . . . . . ... e 73
4.2  Term Structure of Futures Return Volatility and Empirical Model . . . . . . .. .. .. 75
4.3 DescriptionoftheData . . . . . . . . . . ... ... 79

www.manharaa.com




4.4 Empirical Results . . . . . . . . .. 80
4.4.1 EnergyMarket . . . . . . . ... 83

4.4.2 Livestock Market . . . . . . . ... ... ... 83

443 Metal Market . . . . . . . .. . 84

444 GrainMarket . . . . . ... 86

4.5 Seasonality Effect on the Futures Return Volatility . . . . . . . . . .. .. ... .... 88
4.6 Conclusion . . . . .. ... 93
CHAPTERS. SUMMARY ANDDISCUSSION . .. ... ... ... 96

Summary of Methods and Contributions . . . . . . . ... ... ... ......... 96

www.manharaa.com



vi

LIST OF TABLES
2.1 Parameter estimates for the lean hog futures market. . . . . . .. .. ... .. 17
2.2 Parameter estimates for the soybean futures market. . . . . . . ... ... .. 22
23 Deviance results for the lean hog and soybean futures prices. . . . . ... .. 24
2.4 Gelman-Rubin test statistics for the lean hog and soybean futures markets. . . 30
3.1 Parameter Estimates: LeanHogs . . . . . . ... ... ... ......... 56
32 Parameter Estimates: Soybeans (Futures dataOnly) . . . . . ... ... ... 61
33 Parameter Estimates: Soybeans (Futures and Options) . . . . ... ... .. 62
34 Parameter Estimates: Crude Oil . . . . . .. ... ... ... ....... 65
4.1 One Regressor OLS Regression Results . . . . . .. ... ... . ...... 81
4.2 Regression Results of Our Model . . . . . ... ... ... .. ....... 82
4.3 Seasonality Effect on Futures Return Volatility . . . . ... ... ...... 89

www.manharaa.com




2.1
22
23
24
2.5

2.6

2.7

2.8

3.1
32
33
34
3.5
3.6
3.7
3.8

4.1

4.2

vii

LIST OF FIGURES

Projection of lean hog futures prices on January 15,2010. . . . . . .. .. ..
Projection of lean hog futures prices on December 16,2002. . . . . . .. ..
Projection of soybean futures prices on January 15,2010. . . . . . ... ...
Projection of soybean futures prices on November 15, 2000. . . .. ... ..
95 percent credible band of futures prices predicted by Model 3 for soybean
market on January 15,2010. . . . . . ... ..o
95 percent credible band of futures prices predicted by Model 3 for lean hog
market on January 15,2010. . . . . . ... .. ... L.
Posterior distributions of selected parameters for Model 3, corresponding to
lean hog futures prices. . . . . . . . . . . . ...
Posterior distributions of selected parameters for Model 3, corresponding to

soybean futures prices. . . . . . . ... ...

Behavior of x;, conditional expectations, and 95% confidence intervals under Black’s model
Behavior of x;, conditional expectations, and 95% confidence intervals under Schwartz’s model
Behavior of x;, conditional expectations, and 95% confidence intervals under our model
Projection of lean hog futures prices on Jan. 15,2010 . . . . . . . . . . . ... .. ..
Projection of lean hog futures prices on Dec. 16,2002 . . . . . . . . . . . . . . . ...
Projection of normalized at-the-money call option prices: leanhogs . . . . . . . . . . ..
Projection of normalized at-the-money call option prices: soybeans . . . . . . . . . . . .

Projection of normalized at-the-money call option prices: crudeoil . . . . . . . . . . ..

Three different patterns on futures return volatility . . . . . . . . . . . . . ... ...

Model implied and historical volatility of futuresreturn . . . . . . . . . . . . . . . ..

www.manaraa.com

18
19
21

21

25

26

31

32

39
40
41
58
59
60
64
66

74

7



43
4.4
45
4.6
47
4.8
49

4.10

viii

Model fitted and historical volatility of futures return on energy market
Model fitted and historical volatility of futures return on livestock market
Model fitted and historical volatility of futures return on metal market .
Model fitted and historical volatility of futures return on grain market .
Seasonality effect in the grainmarket . . . . . . . ... ..
Seasonality effect in the energy market . . . . . . . .. ..
Seasonality effect in the meat market . . . . . . . ... ..

Seasonality effect in the metal market . . . ... ... ..

.......... 84

......... 85
.......... 86
.......... 87
.......... 90
.......... 91
.......... 92
.......... 92

www.manharaa.com



1X

ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to complete this
dissertation. I am deeply indebted to the guidance from my supervisors, Dr. Sergio Lence and Dr.
Dermot Hayes and my committee member Dr. Chad Hart. We have been meeting and discussing on
this project almost every week for more than three years. They provided me time, patience, and energy
in my work and I am deeply grateful for their helpful advice, continued support and encouragement.
The completion of the dissertation would have been impossible without their knowledge and assistance.

I wish to express my sincere gratitude to my committee members Dr. Helle Bunzel, Associate
Professor at Iowa State University and Dr. Ananda Weerasinghe, Professor at lowa State University for
their constructive comments and invaluable insights to the dissertation. I also have been benefitted a lot
from taking their inspiring courses.

Lastly, I would like to give my special thanks to my family for their understanding and endless love
through the duration of my studies, to my daughters Fiona and Olivia for bringing us a lot of joys and

happiness throughout my work.

www.manaraa.com



CHAPTER 1. OVERVIEW

This dissertation consists of three essays investigating the pricing issue in and properties of com-
modity futures and options markets.

Chapter 2 focus on commodity futures markets. Futures markets on agricultural commodities typ-
ically trade with maximum maturity dates of less than four years. If these markets did trade with
maturities eight or ten years distant, futures prices would have value as price forecasts and as a way
to structure long-term swaps and insurance contracts. Agricultural commodity markets generally ex-
hibit mean reversion in spot prices and convenience yields. Spot markets also exhibit seasonality. We
develop and implement a procedure to generate long-term futures curves from existing futures prices.
Data on lean hogs and soybeans are used to show that the method provides plausible and statistically
significant results.

An option pricing model is proposed in Chapter 3. Options on agricultural commodities with ma-
turities exceeding one year seldom trade. One possible reason to explain the lack of trading is that we
do not have an accurate option pricing model for products where mean reversion in price levels can be
expected. Standard option pricing models assume proportionality between price variance and time to
maturity. This proportionality is not a valid assumption for commodities whose supply response brings
prices back to production costs. The model proposed here incorporates mean reversion in price levels
and includes a correction for seasonality. Mean reversion and seasonality are both observed in agricul-
tural markets. We use futures prices from crude oil and lean hog market as well as futures and options
data from soybean market to fit our model. The empirical analysis lends strong support to our model.

Chapter 4 investigates the relationship between futures price return volatility and the contract’s time
to maturity. The Samuelson hypothesis predicts that futures price return volatility will increase as the
futures contract approaches its expiration date. In prior tests of this hypothesis, researchers have used

linear regression to show this this relationship generally holds. In Chapter 4, we develop a term structure
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model that predicts that this pattern is generally non-linear, if the Samuelson effect exists. We use data
on ten commodities to test the hypothesis using our model and the linear model. The evidence suggests
that our model can better explain the term structure of futures return volatility on metals, livestock and
energy markets. However, there is no significant improvement in the grain market. A seasonal effect is
also proposed and estimated but does not change these findings.

The remainder of this dissertation is organized as follows. Chapter 2 and Chapter 3 are developed to
get more accurate pricing formulas for commodity futures and options markets, especially for renewable
agricultural commodities. Chapter 4 tests Samuelson hypothesis using the term structure model based
on the futures pricing formula that we proposed in Chapter 2. Finally, in Chapter 5, we summarize the

contributions in this dissertation.
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CHAPTER 2. The Long-Term Structure of Commodity Futures

2.1 Introduction

Futures contracts on agricultural commodities have a limited number of maturity dates. For ex-
ample, the most distant maturity date for corn, soybeans and wheat is at most four years. For futures
contracts on livestock products, the furthest maturity date is about two years. This situation is unfor-
tunate for two reasons. First, futures markets have long been known to be more accurate in predicting
future prices than large-scale econometric models (Just and Rausser (1981)).! This suggests that longer-
maturity contracts would have public value as predictors of future prices. Second, the agricultural sector
has not participated in the development of swap contracts to the extent that is common in other markets
and sectors. We hypothesize that some market participants might be willing to use these contracts if
there was an inexpensive way to find the fair value of the long-term contracts given the information
implicit in the short-term contracts that do trade.

One key piece of information needed to successfully construct a swap is the long-term futures curve.
For crude oil and Eurodollars, maturity dates as far as ten years in the future are available. For other
markets, such as gold, stock indices and exchange rates, the futures curve can be determined by simple
arbitrage formulae (e.g., cost of carry for gold, interest rate minus dividend for stocks, and the interest
rate differential for currencies). However, the long-term futures curve cannot be obtained from current
futures contracts in agriculture due to the lack of long-term maturities.

To see why it might be useful to introduce long-term swaps in agriculture, consider the circum-

stances faced by a farmer who is about to purchase land or build a livestock facility, or a soybean

Tt could be argued that the method we propose here is in fact an econometric model, and therefore subject to the failings of
these models. While it is true that the method we propose depends on econometric estimation, the purpose of this estimation
is to use the term structure of existing short-term futures to estimate the long-term futures curve. This philosophy is very
different from the long-run supply and demand parameters that are typically used to drive results in structural econometric
models of the type evaluated by Just and Rausser.
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processor who plans to construct a new crushing plant. These investments will typically not provide
a return that covers costs for a decade or more. We are not aware of any long-term swaps or forward
contracts that are routinely used in agriculture to mitigate these long-term risks. Firms making these
investments might be willing to forgo the benefits associated with price volatility and instead sign long-
term swaps or forward contracts to ensure a return on investment, but they cannot do this because the
long-term futures curve is not available.” It is also likely that the interest paid on funds that are bor-
rowed to make these long-term investments would be lower if exposure to long-term price risk could be
mitigated.

One challenge in estimating the long-term futures curve in agriculture is that commodity supply
will typically respond to prices if producers are given enough time. This means that long-term futures
contracts, if they did exist, would exhibit a trend toward expected production costs in the absence of

risk premia.’

Equivalently, the market would exhibit mean reversion. The speed of mean reversion
will depend on the commodity in question, as well as on particular market circumstances, such as the
distance of current spot price from production costs, expected production costs for future periods, the
level of carryover stocks, current and expected weather patterns, livestock productivity, or the level of
convenience yield. These circumstances will be known to market participants and will be used by them
in buying and selling the futures and options contracts that do trade. But these relationships are complex
and far more difficult to understand than the simple no-arbitrage relationships that exist for investment
commodities such as gold, stock indices, or currency.

This chapter develops and implements a procedure for extracting the commodity- and time-specific
parameters required to construct long-term futures curves where mean reversion exists. A number of
studies report evidence of mean reversion in commodity cash prices (e.g., Peterson, Ma, and Ritchey

(1992); Allen, Ma, and Pace (1994); Walburger and Foster (1995)). Our model builds on an influen-

tial paper by Schwartz (1997). In an out-of-sample forecasting exercise, Bernard et al. (2008) show

2 As pointed out by an anonymous reviewer, even though multi-year rollover hedges might seem appealing in the absence
of long-term futures, rollover strategies do not allow one to lock in current futures prices for crops to be harvested one or
more years later. Lence and Hayenga (2001) provide a theoretical model explaining the failure of multiyear rollover hedging
strategies, and empirical evidence supporting their model.

3Under the risk-neutral measure, futures prices for a fixed maturity are martingales. The risk-neutral measure and the
physical measure differ to the extent that there are risk premia. Thus, if the spot price exhibits mean reversion in the physical
measure and there are no risk premia, the futures curve must show a tendency for long-term futures to revert back to the spot
price’s long-term mean.
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that Schwartz or Schwartz and Smith (2000) type state-space models greatly outperform other models
according to an RMSE criterion.

Schwartz recognized that periods of temporary scarcity in commodity markets, as indicated by a
positive convenience yield, would eventually be resolved by market forces. He constructed a model
where convenience yield exhibits mean reversion and he used it to create a futures curve for crude oil.
The spot price in Schwartz’s two-factor model is assumed to be trending rather than mean reverting.
When convenience yield is a constant, the spot price in Schwartz’s model exhibits geometric Brownian
motion. Our problem is more complex because we expect mean reversion both in the convenience
yield and the price level. In our setup, the spot price is allowed to exhibit mean reversion in both the
historical and risk-neutral measures.* For example, if lean hog supplies are plentiful and prices are
below production costs, the market might show a very normal convenience yield, but we will expect a
contraction in supply and a reversion in the price level to production costs.

A second feature of our model is that we recognize that agricultural markets exhibit seasonality, and
that these seasonal patterns will be evident in the futures contracts that do trade and in the long-term
futures curve that we want to estimate. Sgrensen (2002) modeled seasonality in agricultural commodity
futures by adding a deterministic seasonal component to the commodity spot price. He derived a closed-
form futures pricing formula based on his one-factor model with seasonality. Richter and Sgrensen
(2002) proposed a three-factor model to explore the seasonality patterns in both spot price level and
volatility in commodity markets. However, closed-form solutions for futures pricing formulas are not
available for their model setup.

Seasonality is introduced into our model by allowing the parameters in the drift terms of the two
factors (spot price and convenience yield) to be a periodical function of calendar time. The evaluation
of futures pricing expressions can be reduced to the problem of solving ordinary differential equations
(Duffie, Pan, and Singleton (2000)). Adding seasonality into the model makes the solution more in-
volved, because the corresponding stochastic differential equations are inhomogeneous in time as the
drift coefficients are functions of calendar time. However, we are able to derive closed-form expressions
for futures formulas, which greatly facilitate the empirical work.

As Schwartz recognized, a negative relationship between supply/inventories and convenience yields

4Futures prices are risk-neutral expectations of future spot prices, and are martingales in the risk-neutral measure.
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is predicted by the theory of storage. Thus, when inventory is low and supply is scarce the convenience
yield from marginal storage is high, and the opposite is true when inventory is high and supply is large.
Since commodity supply exhibits seasonality, the convenience yield is also assumed to behave as a
mean-reverting process with seasonality. The present empirical work suggests that the speed of mean
reversion is higher in the lean hog market than in the soybean market. Seasonal patterns are clear in
the estimation results for both agricultural commodities. The impact of our two modeling innovations
(mean-reverting spot prices and seasonality) is shown by comparing Schwartz’s model to ours.

Similar to the partially overlapping time series (POTS) model introduced by Smith (2005), our
estimation relies on data for all of the futures contracts being traded on a particular date. However, our
study differs from Smith’s in a number of important aspects. In particular, Smith focused on capturing
the volatility dynamics of commodity futures, whereas our main interest is in estimating the long-term
futures curve. Hence, even though the POTS model may prove quite useful for pricing options on futures
contracts, it cannot be employed to estimate the futures price of long-term non-traded contracts, which
is essential for the present exercise. Another important difference between the POTS model and ours
is that our theoretical framework prices the entire futures curve by imposing no-arbitrage restrictions
across all contracts.” In contrast, the POTS model does not impose any theory-based restriction among
the prices of futures contracts for different maturities.

The rest of this chapter is organized as follows. In the next section, we generalize Schwartz’s
two-factor model, and seasonality is introduced into the proposed model. In the third section, futures
pricing formulas are derived. Section four describes the empirical specification, the data set, and the
estimation method. The econometric results and their analysis are discussed in section five. The last

section concludes the chapter.

2.2 Schwartz’s Model and A Generalization

Schwartz advanced a path-breaking model of commodity prices, by incorporating Kaldor’s (1939)
fundamental insight that commodity markets are characterized by convenience yields. Schwartz pos-

tulated that the convenience yield net of storage cost (net convenience yield), ¢, follows the Ornstein-

SIn fact, it is this restriction which allows us to estimate long-term futures prices from the prices of short-term futures
contracts.
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Uhlenbeck stochastic process

dc; = (ue —kee;)dt + o.dwe(t), 2.1)

where u,/k. is the long-term mean of the net convenience yield, k. > 0 is the net convenience yield’s
speed of mean reversion, and dw,(t) is a Wiener process. However, Schwartz assumed that the process
of the commodity spot price, S;, is not mean reverting. Instead, he assumed it to behave as a geometric

Brownian motion when net convenience yield (c;) is a constant,
dS; = (us — ¢;)S,dt + 038 dw(t), (22)

where dw;(t) is a Wiener process, and dw.(t)dws(t) = pscdt. By defining x; = In(S;), application of

Ito’s Lemma yields the stochastic process for x;,
dx; = (uy — ¢ )dt + opdwi(t), (2.3)

where u, = u; — 62 /2, 0, = Oy, dwy(t) = dwi(t), and Py = Pe-

The expected total rate of return to the commodity holder consists of the expected relative price
change (E(dS;/S;) = us; — ¢;) plus the net convenience yield (¢;). In equilibrium, the expected rate of
return to the commodity holder must equal the risk-free rate (r) plus the risk premium associated with
the stochastic process dx; (Ay), i.e., ug — ¢, +c¢; = r+ A,. Therefore, the corresponding risk-neutral

processes are

de; = (ue —kee, — Ac)dt + c.dw? (1), (2.4

ds;, = (r—c,)Sidt+ c,S,dw?(t), (2.5)

where A, is the market price for the risk associated with the stochastic process of ¢;, and dw?(t) and
dst(t) are the Wiener processes under the equivalent martingale measure. By application of Ito’s

lemma, the risk-neutral process of dx; can be shown to be
dx; = (r— 62 /2 —¢;)dt + o, dw?(t). (2.6)

Note that dw2(t) = dw¥(r) and dw?(t)dw?(t) = py.dt. For convenience, this model is labeled Model

1.
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2.2.1 Price Mean Reversion

A stylized fact of commodity markets is that convenience yields are positively associated with spot
prices. Typically, when a commodity is in relatively short supply, its price is high and its convenience
yield is high as well. Therefore, the net convenience yield is postulated to consist of a linear function

of the logarithm of the spot price (k.x;) plus a stochastic component (y;):
¢ =Y+ kexy. 2.7
The dynamics of y; is given by the Ornstein-Uhlenbeck stochastic process
dy; = (uy — kyy;)dt + oydwy (1), (2.8)
with dw,(t)dwy(t) = pydt. Hence, the corresponding spot price stochastic process is
dS; = [ug—yr — ke In(S;)]Sidt + 0,S;dwy(t), (2.9)
and Ito’s Lemma yields the Ornstein-Uhlenbeck stochastic process for the logarithm of the spot price
dx, = (uy—y, —kexp)dt + Odwy(t). (2.10)

In equilibrium, the instantaneous expected total return to commodity holders must equal the risk-

free rate plus the associated market price of risk:

r+Ae = (e —yr —kex) + (0 +kexy) 2.11)

= (uy—yr —keXe) — Ao =1 — (yr +koxy ). (2.12)
Therefore, the risk-neutral process of dS; may be written as:
dS; = [r— (v + kex;)]Sidt + 6,8,dw(t). (2.13)
Then, application of Ito’s lemma yields
dx; = [r— 062 /2 — (yi +kexy)|dt + 0,dw2(t). (2.14)
Denoting the market price for the y, risk as A,, the risk-neutral process of dy; is

dy, = (ty — kyys — Ay)dt + 0,dw(t), (2.15)
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where dw2 (1)dw2 (t) = pydt.

This generalized model is referred to as Model 2. It is clear that Model 1 is a special case of Model
2, because the two models are identical if k. is restricted to equal zero, in which case ¢, = y;. The key
difference between Models 1 and 2 is that, when ¢, is a constant, the logarithm of the spot price in
Model 1 behaves like a Geometric Brownian motion. In contrast, when y, is a constant, the logarithm
of the spot price in Model 2 satisfies an Ornstein-Uhlenbeck stochastic process. Empirically, testing
whether k, is equal to zero or not allows us to determine whether the spot prices are mean reverting in

a given market.

2.2.2 Seasonality

The models considered so far assume that all parameters are constant throughout the year. Most
commodity markets differ from the markets for stocks, bonds, and other conventional financial assets,
in that they typically exhibit seasonal patterns. For example, prices for annual crops are high in the pre-
harvest season and low at peak-harvest, and pork prices are usually high during the barbecue months.
To capture this feature, the periodicity in the corresponding parameters is represented by a truncated
Fourier series. Seasonality is added into the model by setting u, in equation (2.10) to be a periodic

deterministic function of time:
H
Z Uy o.cosCOS(2Tht) + 1ty j, sinSin(27ht )] (2.16)

where H determines the number of terms in the sum, and u, o, Uy s cos and Uy j, sin are constant seasonality
parameters. Based on the Akaike Information Criterion (AIC) (see, e.g., Harvey 1981), H is selected to
be equal to 2. Note that if uy j, cos = tx jsin = 0, for Vi > 1, uy(t) = u, o, then the model does not exhibit
seasonality.

The long-term mean parameter of the first component of the net convenience yield in equation
(2.15), uy(t), is similarly generalized to allow for seasonality by assigning to it a functional form anal-
ogous to (2.16). In addition, the risk premia A, and A, in the previous section are also assumed to be
analogous periodic function of calendar time,

H

2i(t) = Xio+ Y [AincosCos(2mht) + Ai psinSin(27ht )], (2.17)
h=1
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for i = x,y. For simplicity, Model 2 augmented with seasonality is referred to as Model 3. The risk-
neutral processes (2.14) and (2.15) incorporating seasonality provide us the basic foundations for pricing

futures contracts on commodity markets, which is done in the next section.

2.3 Futures Pricing

Commodity spot prices and net convenience yields are modeled in continuous time as a system of
stochastic differential equations in an affine term structure class. The key advantage of affine models
is that they are tractable for asset pricing purposes. We rely on the traditional no-arbitrage approach
to price commodity derivatives. The seasonality component makes the derivation more complicated.
However, closed-form solutions for the futures pricing formula can still be obtained. The following
paragraphs show the process of valuation of commodity futures contracts in the presence of mean-
reversion and seasonality.

The risk-neutral process of the two latent variables defined in the previous section for the advocated

model can be written as

dx, r—o2/2—kx,—y o, 0,0,
"| ~N /2= kot =3 dt, X PoOO (2.18)

dy iy () = Ay () = Ky Py0:0y O}

This may be expressed more compactly as
dpy, = (x0(r) — K1t )dt +Vdw@(t), (2.19)

by defining p; = [v1,y,]". k(1) = [r — 02/2,y(0)] . W(r) = u, (1) = A, (1) = yo +h§1[wh7cosc:os<znm>

ke 1
"‘Wh,sinSin(znht)], Yo =uUyo— A'y,Os Wi.cos = Uy, h,cos — ly,h,cos, Yh sin = Uy h,sin — Afy,h,sin, K = s
0 k
2
Oy PxyOxOy .
V= , and ’ is the transpose operator.
2
Pxy0x Oy o,

Duffie, Pan, and Singleton (2000) analyzed a set of stochastic processes that includes processes like

(2.19). By applying the method they proposed, a closed-form solution for the futures price at date ¢
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maturing at time 7" can be obtained as follows:

Ft,T) = EPIS(T)]
= E2{explgo+ou(T)]} (2.20)
= expla(t,T)+B(#,T)u(r)]
= fir=W(F@,T))=a@,T)+p(,T)u(), (2.21)

where E,Q [.] is the expectation operation under the risk-neutral probability measure. Since the first factor
is defined to be the logarithm of the spot price (x, = In(S(¢))), it must be the case that ¢g = 0 and ¢’
= [1,0].° To prevent arbitrage, coefficients o(t,7) and B(¢,T) need to satisfy the following ordinary

differential equations (ODEs)

ap(t,T)

= K, B(¢,T) and (2.22)
80{59@ = _Ko(t)ﬁ(fvT)—%ﬁ’(faT)Vﬁ(t,T), (2.23)

with boundary conditions 3(7,T) = ¢ and a(T,T) = ¢. Closed-form solutions for a(¢,T) and B(¢,T)

are shown in Appendix A.

2.4 Empirical Analysis

In the advocated model, we employ the logarithm of the spot price and the net convenience yield
as the two latent state variables. Recall equation (2.19) and define A(t) = [A.(t),A,(¢)]. Then, the

historical process of the two latent variables can be written in matrix form as
du; ~ N((xo(t) — kipe +A(2))de, V). (2.24)

We apply the first-order Euler discretized version of the continuous time model (2.24) with discretiza-

tion interval A = ﬁ to reflect monthly data. The discretized empirical model is

e = e+ (Ko(t) — kit + A()A+ VA&, & ~N(Qpy 1), V). (2.25)

OThis restriction on ¢y and ¢ follows from (2.20) and the fact that the spot price is the same as the futures price with
instantaneous maturity (i.e., S(t) = F(¢,t)). To see this, note that application of (2.20) yields x, = In(S(¢)) = In(F (¢,1)) =

In(E2{exp[do + o11(1)]}) = In(exp[do + o p:]) = o + ¢ [x7,y:] . which can only be satisfied if g9 = 0 and ¢~ = [1,0].
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The likelihood of observing the latent factors can be calculated from equation (2.25). In addition, we
also observe futures prices from the markets, and the likelihood of observing the market prices can be
inferred from the following empirical futures models.

According to equation (4.1), fir = In(F(t,T)) = o(t,T) + B(¢,T)u(r). Following Chen and
Scott (1993), we assume that all but two futures contract prices are observed with measurement error.
Suppose we have a historical data set consisting of M > 2 series of (logarithms of) futures prices with
M different times to maturity. Assume that among the M futures contracts with distinct maturity dates,
two of the prices are perfectly correlated with the state variables u,, and the remaining (M — 2) prices
are observed with normally distributed errors e¢;. Denote the vector with the two perfectly correlated
futures prices as f° = | fores f,"TZ} and their maturity dates [T}, 75] . Similarly, let £* = | Tores s
e ]”thA.l_z]’ represent the (M — 2) imperfectly correlated futures and [T7°, -+, Ty ,] be their maturity

dates, respectively. Then,

fro= a’(t)+B°(t)u, (2.26)
fro= at(@)+ B () +e, (2.27)
where a°(t) = [a(1,T7), a(t,Ty)], B°(t) = leT?) Bl Ti) ot (1) = [a, Tp), o(t, T). .

Bl (t, TZO) BZ(t7 TZO)

Bl(taTl.) ﬁZ(taTl.)
Bl (tﬂTZ.) B2(I’T2.)

a(t, Ty ,)], and B°(1) = . The vector of errors associated with the log-

L ﬂz(thll:I—Z) ﬂZ(I7TA:I—2) i
futures not perfectly correlated with the state variables is assumed to be multivariate normally dis-

tributed, i.e., ¢, ~ N(Q((M_z)xl),GZQ), where 0((p7_2)x1 is an (M —2) vector of zeros, 67 > 0 is a
scalar, Q is an (M — 2) x (M — 2) matrix with the i, jth element equal to pl~/! for p € (—1,1), and
o(t,T) and B(¢,T) are defined in Appendix A.

Since the two latent factors are not observed, direct estimation of the historical evolution equa-
tion (2.25) is not feasible. However, given equation (2.26), the factors can be solved for as y; =
[B°()]~'[f° — a°(t)], provided the (2 x 2) matrix B°(¢) is invertible. In this way, the value of the
state variables can be exactly filtered out at each sample date, by inversion based on the two contract

prices observed without errors.
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2.4.1 Description of the Data

Futures prices for two agricultural commodities, soybeans and lean hogs, are employed to estimate
the models. The futures prices involved are the settlement prices at the Chicago Mercantile Exchange
(CME) for the 15th calendar day of each month from January 1978 through January 2010, for a total of
385 observation dates.” If the 15th of the month is a holiday, the nearest trading day’s settlement price
is used. The settlement prices observed on days with zero trading volume are discarded, because they
are set by the CME administration for the purpose of calculating margins. In other words, these prices
are not actual trading prices. The price units are cents/bushel and cents/pound for soybean futures and
lean hogs futures, respectively.

Since the longest maturity in the soybean (lean hog) futures sample is 34 (19) months, the ideal data
set would consist of a panel of 385 x 34 = 13,090 (385 x 19 = 7,315) observations. However, futures
for some maturities are not traded. Soybean futures currently have only seven maturity months: January,
March, May, July, August, September, and November. Lean hog futures have eight maturity months:
February, April, May, June, July, August, October, and December. In addition, data with far-away
maturities are often missing because they are not traded. For example, for January 1980 only seven
prices are observed for soybean futures. They are the 2nd, 4th, 6th, 7th, 8th, 10th, and 12th elements
of the 25th row of our data set, which correspond to the expiration dates of March, May, July, August,
September, and November of 1980 and January of 1981. Letting the i, jth element of our data set be the
price of the futures contract that expires j months after date i, this means that all of the elements in the
25th row of our soybean data set are missing except the 2nd, 4th, 6th, 7th, 8th, 10th, and 12th columns.
All of the other elements for this data row are recorded as unobserved in our data set. Hence, given the
futures contract specifications, the total number of observations available for soybean (lean hog) futures

prices is 3,157 (3,032).

2.4.2 Empirical Method

Bayesian Markov chain Monte Carlo (MCMC) methods are employed to estimate the model pa-

rameters. Bayesian techniques have been used quite often over the past decade to analyze state-space

7In 1997, the hogs futures contract switched from live hogs to lean hogs. Live hog prices were converted to lean hog prices
using the standardized conversion rate LeanHogPrice = LiveHogPrice/0.74. This conversion rate was the accepted rate at
the time,and-has,remained;the,aceepted conversion rate between live and lean hog prices.
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models (see Hore et al. (2010) and Durbin and Koopman (2000)). A recent article by Harvey and
Koopman (2009) highlights that the two main approaches to estimate state-space models are maximum
likelihood and Bayesian methods. Given that one of the key issues in the development of longer-term
futures is the confidence market players have in constructing long-term futures curves, we chose to
develop an estimation procedure that would allow us to separate the variation in projections between
the parameter uncertainty (model uncertainty) and observational errors. The Bayesian framework does
this more naturally than the maximum likelihood approach. Also, the proposed framework provides
a streamlined way to produce credible intervals for nonlinear functions of the estimated parameters,
such as the projections for the futures curves.

The empirical method described below is designed for Model 3. Models 1 and 2 can be easily
retrieved by imposing the corresponding parameter restrictions into the procedure. We assume a con-
stant risk-free rate of r = 5 percent.” We adopt non-informative priors for iry, iy, ky,ky,V.p, Zx, and )_\;,
Where i = [14; 0, Ui.1 cos» i1 sins i2.cos> Ui 2.sin) AN A = [Ai.0, i1 coss M1 sins Ai.2.cos: M 2.sin) FOT i = x,y. As
such, the posterior distributions for these parameters are effectively the likelihoods for the parameters
under the model specification. The exception is 62, for which we impose the conjugate prior 62 ~
Inv—xz(Ve,Eg). This prior is equivalent to the addition of V, data points with a sample variance of
65. For this study, V, is set at 4 and 63 is set at 0.0005. For several of the parameters, explicit poste-
rior distributions cannot be derived. For those cases, algorithms have been derived to sample from the
unspecified distributions based on their proportionality with the model likelihoods.

Defining the set of parameters for the jth iteration as ®l) = {V(j ), /Ty(j), Zx(j), IT/(j), k,(cj ) ,k)(;i ), p(j ),
Gez () }, and letting @Ejg denote all of the components of ®(/) except for z, the advocated MCMC iteration
steps are as follows.

Step 1. Specify starting values for parameter and missing observations ®(©).

> ()

Step 2. Given [VU), 4,7, fx(J), o], estimate [FU+D, KUY k7T p(+1] by means of an

8Credible intervals are the Bayesian analogs of confidence intervals in frequentist statistics.

9For the period under analysis, the average annual interest rate corresponding to three-month treasury bills was 5.60
percent. It must be noted, however, that the interest rate does not change the analysis in any substantive way. As implied by
(2.12) and (2.14), the main impact of adopting a different value for the interest rate (r) is to induce an equal change in the
estimated y; component of the net convenience yield, and a change of the same absolute value but opposite sign in the risk
premium (A4). The model could be extended by explicitly modeling stochastic interest rates. However, Schwartz (1997) and
Trolle and Schwartz (2009) show that for commodity futures the pricing error arising from ignoring the stochastic nature of
interest rates is negligible.
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effective adaptive, general purpose MCMC algorithm called t-walk developed by Christen and Fox
(2010). The t-walk compares the likelihood of observing futures prices and state variables given (i.1)
and (i.2) (i.e., the likelihood given existing parameter values) with (ii.1) and (ii.2), (i.e., the likelihood

given proposed parameter values).

Q1) [V — aot) - ﬁ’(”u;(j)]NN(O((M,z)XI) G20 ql,

(i2) ﬁm 1 — (o)) — k) + AW D)/A] VA~ N Qe V),

(i 1) [£7V) = a2 pror) — Beron) PO s N(Q 2100 QPP

i.2) [ " - u“””" (" 1) = K" 0 A D) /8] B N (0a1), VD),

where ,ut(') is computed from equation (2.26) using IT/('), k,(c'), and k§').10

Step 3. Given [IT/(H]),k)(Cj H),ky D plth ),y 2, )} use the Metropolis-Hastings algorithm

to generate V1) as follows:

(a) Draw V(P7°P) ~ Inv-Wisharty ops—3((Nobs —3)V 1)) where Nobs is the number of

observations.

Prob(Verer)| @/ |, 7)) Prob(vpre) v () |
Prob(V| @, £ Prob(v )|V (prop))

(b) Calculate the acceptance ratio, R =
(¢) Draw a random variable ¢ from a standard uniform distribution and set V1) =

v(prop) if ¢ < R. Otherwise, set V1) =y (),

Step 4. Given [V(j“), f/}(j“), k)(c'i H), ky H)], update the unobserved futures prices to get f,(j R ™
this step, we first compute /.L,(j D from the estimated risk-neutral parameters and the futures observed
with no errors using equation (2.26). Then, we update the unobserved futures from the estimated factors
and the other corresponding parameters by means of equation (4.1).

Step 5. Given [VUHD glU+D), A kyH), pUth, Gem], draw ﬂ;,(jﬂ) and ZX(HI) from a multi-

variate normal distribution (see Appendix B for details).

1) - (j+1 . s ; ; _ . . :
Step 6. Given [%(H )’ lX(J )7 v, l//("“), k)((j+1), k§1+1), p(”l)], draw 63(1+1) |ﬁ(1+1)’¢(_1(-;1)
2
~ Inv-x* (Ve +ny, %), where 1 is the total number of observed futures prices and s2 is the mean

squared error of the observed futures prices.

10The perfectly correlated futures prices are selected to be among the observed data.
" Calculating Prob(V(Pr) | &/ v f,<'] >) and Prob(VU) | CIJJ (] )) will again resort to the empirical equations (i.1) and

(1.2).
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Step 7. Set j = j+ 1.

Step 8. If the maximum iteration is reached, stop. Otherwise, go to Step 2.

2.5 Estimation Results

The advocated Bayesian MCMC procedure is performed with four chains for each model and mar-
ket. Each chain is started at a different initial value and run for two million iterations. The first one
million iterations are discarded as a burn-in period, and the remaining one million iterations are tested
for convergence by means of Gelman and Rubin (1992) tests. As evinced by the Gelman-Rubin test
statistics reported in Appendix C, all of the chains converge adequately for the three models in both

markets.

2.5.1 Lean Hog Market

Parameter estimates for the lean hog market are shown in table 2.1.'> The posterior probability
of parameter k, being positive is estimated to be greater than 97.5% for both Models 2 and 3, which
supports the postulation that the spot price in the lean hog market is mean reverting. This also implies
that the convenience yield is positively related to the spot price. Comparing Model 1 with Model 2, the
lower bound of the credible interval for the correlation coefficient between the two factors in Models 1
is larger than the upper bound of the corresponding credible interval estimated by Model 2, after we set
the convenience yield to be a function of the logarithm of the spot price. The total expected return on
the spot price (u,), the long-term mean of net convenience yield, and the market prices of convenience
yield risk are all negative at the median, but their 95% posterior density region contains zero except for
A in Models 1 and 2.

All of the seasonality parameters in Model 3 are estimated precisely enough to determine the sign
with high probability. This indicates that the lean hog market exhibits a strong seasonal pattern. If the
data exhibit seasonality but the model fails to incorporate it, the seasonal variability in the factors will
be captured by the instantaneous volatility term. Hence, given a data set exhibiting seasonality, models
not allowing for seasonality will estimate a significantly higher value of o, and o, than models allowing

for it, which is confirmed by the values reported in table 2.1.

12See AppendixD forgraphs;of the posterior distributions of key parameters.
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Table 2.1: Parameter estimates for the lean hog futures market.

Parameters Model 1 Model 2 Model 3
2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%
ky 0.414 0.657 1.015 0.447 0.647 0.902

ke/ky 2330  2.608 2.887 1.461 1.935 2.355 1.027 1.312 1.648
Ae/ A0 -0.449  -0.287  -0.126 -0.369 -0.225  -0.099 -0.208  -0.151  0.100

Ay, 1 sin 0.637  0.699  0.768
Ay, 1 cos -0.485 -0.391  -0.301
Ay 25in -1.898  -1.758  -1.612
Ay2.cos 1461  1.603  1.744
Uy -0.061  -0.020 0.021 -0.049  -0.006  0.036 -0.004  0.018 0.038
Uy 1,sin 0.020 0.051 0.083
Uy, 1,cos 0.068 0.093 0.117
Uy 2 sin -0.128 -0.108 -0.089
Uy2 cos -0.267  -0.247  -0.226
uco/uyo  -0.198  -0.085  0.027 -6.597  -5.254  -3.817 -4.230  -3.527  -2.887
Uy 1 sin -0.457 -0.307 -0.155
Uy 1,cos -2.277 -2.114 -1.945
Uy 2 sin 2.375 2.716 3.057
Uy 2 cos 2.908 3.260 3.613
Oy 0.425 0.449 0.473 0.409 0.430 0.454 0.327 0.342 0.356
oy 1.282 1.447 1.612 0.931 1.107 1.304 0.532 0.617 0.702
Pxy 0.868 0.884 0.898 0.608 0.728 0.803 0.508 0.628 0.726
P 0.156 0.190 0.225 0.161 0.196 0.231 0.061 0.099 0.137
o, 0.077 0.081 0.084 0.076 0.080 0.083 0.044 0.046 0.047

Note: The three quantities denote respectively the 2.5, 50 and 97.5 percentiles of the posterior probability
band.

Seasonality may also significantly affect the model’s ability to fit the market data. The estimates
of o, describe the inferred standard deviation on the noise terms that allow for deviations between
theoretical and observed log-futures prices. One source of this noise in our specific data set may be
that the settlement prices are established by the CME administrators, which may not exactly match
the market prices. Errors in data registration, price limits and handling of bid-ask spreads may also
contribute to the noise term. As can be seen from table 2.1, the upper bound of the credible interval
for o, in Model 3 is smaller than the lower bound of the corresponding credible interval estimated by

Model 1 and 2, which signals a better fit of the observed data.
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Figure 2.1: Projection of lean hog futures prices on January 15, 2010.

Figures 2.1 and 2.2 show the term structure of median lean hog futures prices implied by the three
models on January 15, 2010 and December 16, 2002, respectively. On January 15, 2010, the spot price
in the lean hog market was high relative to production costs. For the futures curve with a short time to
maturity, the curvature depends on the relative value of the net convenience yield. However, in the long
run, the futures curve implied by Schwartz’s model (Model 1) depends on the risk-neutral drift of the
spot price process. If we evaluate the drift at the risk-neutral long-term mean of the net convenience
yield using posterior medians, it is negative. So, in the long run, the slope of the futures curve predicted
by Model 1 is negative. Model 2 incorporates mean reversion in the spot price. So when the spot
price is relatively high, the futures curve implied by Model 2 initially decreases at a faster rate than
the futures curve implied by Model 1, and then flattens out as prices approach the market’s estimate of
production costs. This long-term futures price (F'(¢,00)) is independent of the current spot price and the
net convenience yield. The futures curve implied by Model 3 follows the trend of Model 2, but with
seasonality. It is clear that futures prices implied by Model 3 fit the observed prices more precisely

compared to the models which ignore seasonality. A local maximum is observed when time to maturity
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Figure 2.2: Projection of lean hog futures prices on December 16, 2002.

is six months, which corresponds to a July maturity date. July is the traditional barbecue season in
the U.S. and the demand for lean hogs is the highest over the year, which is consistent with historical
futures price patterns.

In contrast to January 15, 2010, the spot price for lean hogs was relatively low on December 16,
2002. With mean reversion embedded, Model 2 predicts that the futures curve will increase at a de-
creasing rate and will converge to the long-term futures price (F(¢,o0)). The curvature of the futures
curve implied by Schwartz’s model also depends on the relative level of the spot price and the net con-
venience yield on that date for short time maturities. However, for longer-term maturities the futures
curve is predicted to be decreasing regardless of the fact that the spot price may have already been well

below production costs.

2.5.2 Soybean Market

Model estimates for the soybean market are shown in table 2.2. The posterior probability of pa-
rameter k, being positive is estimated to be greater than 97.5%, which provides empirical support for

the postulation that the soybean spot price process is also mean reverting. Parameter u,, which in
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Schwartz’s model describes the expected appreciation rate of the non-stationary state variable (the log-
arithm of the spot price), also has a posterior probability of being positive greater than 97.5%. The
estimates in table 2.2 indicate that the net convenience yield mean-reversion parameters k. and k, are
estimated to have a high probability of being positive in Model 1 and Model 2; hence, the state variable
¢; in Schwartz’s model and y, in Model 2 are stationary for soybean. The median of the estimated k.
and k, is about 1.06, corresponding to half-lives of 7.7 months.'* Compared to the lean hog market, the
soybean market exhibits lower speeds of adjustment in the spot price (k) and the net convenience yield
(ky). One possible reason explaining this result is that lean hogs have a shorter production cycle, which
allows producers to adjust supply faster. In Model 1, parameter u. has an estimated posterior probability
of being positive in excess of 97.5% , which implies that the long-term mean of the net convenience
yield in the soybean market is positive. Parameter u, is estimated to be negative with high probability
in Models 2 and 3. However, net convenience yield in Models 2 and 3 is defined as ¢; = y; + kyx;. If we
take the long-term mean of y, and x; to evaluate ¢;, the latter is also positive.

All of the three models report similar instantaneous volatilities and instantaneous correlation coef-
ficient between the two factors. Although for the soybean market k, is estimated to have a posterior
probability of being positive greater than 97.5%, its magnitude is small when compared to the lean hog
market (for which k, = 0.65 at the median), and it has little impact on the model’s ability to fit the
historical data. There is large overlap on the credible interval of o, for Models 1 and 2. The estimates
of o, describe the inferred standard deviation on the noise terms that allow for some deviation between
theoretical and observed log-futures prices.

Seasonality is important and significant in the soybean market. There is only one seasonality pa-
rameter (4,1 ¢os) Whose 95% posterior density region includes zero. Furthermore, the model with sea-
sonality (Model 3) yields a credible interval of o, with an upper bound smaller than the lower bound
of the corresponding credible interval generated by its counterpart without seasonality (Model 2). The
non-seasonal part of risk premia associated with the net convenience yield process is estimated to have
more than 97.5% posterior probability of being negative in all of the models.

Figures 2.3 and 2.4 show the term structure of median soybean futures prices implied by the three

13The half-life expresses the expected time it takes the impact from a given shock to the process to level off by half the size
of the shock. The half-life in the Ornstein-Uhlenbeck process is calculated as In(2)/k. In our case In(2)/1.07 = 0.65 years,
which is about 7.7 months.
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Figure 2.3: Projection of soybean futures prices on January 15, 2010.
Note: ) represents CME data with zero volume.
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Figure 2.4: Projection of soybean futures prices on November 15, 2000.
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Table 2.2: Parameter estimates for the soybean futures market.

Parameters Model 1 Model 2 Model 3

2.5% 50% 97.5% 2.5% 50% 97.5% 2.5% 50% 97.5%

ki 0.005 0.022 0.038 0.038 0.052 0.063
ke/ky 0.950 1.061 1.170 0.978 1.075 1.172 1.031 1.124 1.230
Ae/ Ao -0.061  -0.046  -0.033 -0.054 -0.040 -0.025 -0.038  -0.025 -0.013
Ay 1sin 0.183 0200 0218
Ay cos -0.026  -0.008  0.010
Ay2,sin -0.339  -0.245  -0.159
A2 cos 0231 0315  0.395
Uy 0.020 0.030 0.038 0.024 0.032 0.041 0.029 0.037 0.046
Uy, 1,sin 0.079 0.091 0.103
Uy 1,cos 0.052 0.064 0.076
Uy 2 sin -0.108 -0.096 -0.083
U2 cos -0.113  -0.102  -0.091
Ue.0/Uy0 0.005 0.014 0.023 -0.249  -0.138  -0.018 -0438  -0.361 -0.262
Uy 1 sin 0.203 0.249 0.289
Uy 1,cos -0.651 -0.604 -0.559
Uy 2 sin 0.508 0.636 0.768
Uy 2 cos 0.223 0.356 0.501
Oy 0.247 0.257 0.268 0.247 0.258 0.269 0.241 0.251 0.262
o, 0.245 0.263 0.281 0.246 0.262 0.279 0.241 0.256 0.275
Pxy 0.669 0.700 0.729 0.647 0.682 0.716 0.625 0.662 0.696
p 0.076 0.107 0.138 0.080 0.109 0.140 0.084 0.115 0.148
o, 0.0305 0.0315 0.0332 0.0305 0.0313 0.0316 0.0247 0.0255 0.0263

Note: The three quantities denote respectively the 2.5, 50 and 97.5 percentiles of the posterior probability
band.

models on January 15, 2010 and November 15, 2000, respectively. From figure 2.3, we can see that
Model 3 precisely captures the seasonality feature of the CME data for maturities shorter than 20
months. For completeness, figure 2.3 also shows the settlement price for contracts with positive open
interest but zero trading volume. These prices were set by the CME to calculate the margins that need
to be posted, but are not prices at which trading actually occurred on January 15, 2010. The estimated
futures curve suggests that such zero-volume settlement prices significantly understated the seasonality
that characterizes the soybean market.

On January 15, 2010, the soybean price was relatively high. The futures curve implied by Model 3
shows a market expectation of a reduction in price levels to the market’s estimate of production costs.
For contracts with a short time to maturity, the curvature of the futures curve implied by Schwartz’s
model depends on the relative value of the net convenience yield. If we evaluate the drift at the risk-

neutral long-term mean of the net convenience yield, it is negative. Consequently, the futures curve has a
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constant negative slope in the long run. With a short time to maturity (e.g., less than 24 months), Models
1 and 2 predict similar futures prices. However, as time to maturity increases, the difference becomes
noticeable, with Model 2 predicting a lower value of long-term futures prices. The futures curve implied
by Model 3 follows the trend of Model 2 but with seasonality. We observe a local maximum when time
to maturity is equal to 6 months, which corresponds to a maturity date of July 15, 2010. July is right
before the U.S. harvest season. At that time, the supply is at the lowest point of the year. So it is not
surprising to expect the spot price to be highest on that month.

Figure 2.4 shows the term structure of the futures curve predicted by Models 1 through 3 on Novem-
ber 15, 2000. Compared to January 2010, the soybean spot price was much lower on November 2000.
The net convenience yield is also well below the long-term mean implied by Model 1. Since the stochas-
tic process of the net convenience yield in Schwartz’s model is assumed to be mean-reverting, the net
convenience yield is expected to increase in the following months. And since the net convenience yield’s
speed of mean reversion is much lower in the soybean market than in the lean hog market, it takes a
longer time for the net convenience yield to reach its long-term mean. As the net convenience yield re-
covers, the futures price is expected to increase at a decreasing rate. Finally, when the net convenience
yield reaches its long-term mean, the risk-neutral process of the spot price has a negative risk-neutral
drift. Consequently, the term structure of the long-term futures curve is expected to have a negative
slope in Schwartz’s model. On the other hand, price mean reversion is assumed in Model 2. On that
date, a low value of the spot price and the net convenience yield is implied by Model 2, so both x; and y,
are expected to increase. As a result, Model 2 predicts that futures prices will increase at a decreasing

rate with time to maturity.

2.5.3 Comparison Among Models

Figures 2.1 through 2.4 suggest that Model 3 dominates Models 1 and 2 in terms of fitting historical
data, at least for the dates selected. To provide a more rigorous comparison of the model specifica-
tions, we computed the Bayesian deviance information criterion (DIC) advocated by Spiegelhalter et
al. (2002),

DIC =D(0)+2pp, (2.28)
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where D(0) = —2log(Pr(data | 0)), pp = D(68) — D(8) measures the complexity of the model, 6

represents the posterior means of the parameters, D(0) is the mean deviance, and D(9) is the deviance
of the means. DIC may be interpreted as a classical estimation of fit, D(8), plus twice the effective
number of parameters, pp. Spiegelhalter ef al. proposed that DIC inferences could follow similar

guidelines to AIC tests, where differences of less than 2 show similar support among models, whereas

differences greater than 3 indicate stronger support for one model over another.

Table 2.3: Deviance results for the lean hog and soybean futures prices.

Lean Hogs Soybean
Parameters Model 1 Model 2  Model 3 Model 1 Model 2 Model 3
D -6225.24  -6297.56  -9553.98 -14253.26  -14277.38 -15400.50
D(6) -6233.04  -6307.04 -9576.64 -14261.18 -14288.16 -15425.34
PD 7.80 9.48 22.66 7.92 10.78 24.84
DIC -6217.44  -6288.08  -9531.32 -14245.34  -14266.60 -15375.66

The DIC comparison results are reported in table 2.3. Both the lean hog and soybean results are
shown and the results are the same across the commodities. The differences between the DICs of Models
1 and 2 exceed 20, which indicates strong statistical evidence for the inclusion of mean reversion in the
spot price. The addition of seasonality parameters to the model is also strongly favored as can be seen
by comparing the DICs of Model 3 to those of Models 1 and 2. The DIC results parallel the inferences

that can be drawn from figures 2.1 through 2.4.

2.5.4 95 Percent Credible Band of Futures Prices

Given the substantial uncertainty associated with long-term commodity prices, it is useful to look at
the 95 percent credible band of the futures prices predicted by our model (Model 3). Figure 2.5 shows
such a band for soybean futures on January 15, 2010. By construction, the predicted futures curve goes
through the futures prices with 2 and 12 months until maturity, as those two futures prices were taken
to be the ones perfectly correlated with the latent factors.

The band corresponding to parameter variability shows the 95 percent credible band of the futures
curve induced by the uncertainty in model parameters only. It is observed that the 95 percent credible

band is very tight for futures prices with a short time to maturity. As time to maturity increases, the

www.manaraa.com



25

1050

1000

Cents/Bushel
950
|

900
1

850
1

800
1

I I I I I I
0 20 40 60 80 100
Months to Maturity

——e—— Median

95% Credible Interval (Total Variability)
95% Credible Interval (Parameter Variability)

Figure 2.5: 95 percent credible band of futures prices predicted by Model 3 for soybean market on
January 15, 2010.

variability in the Bayesian estimates leads to a wider 95 percent credible band. When time to maturity
is near 100 months, the width of the band exceeds $1/bushel.

The “total variability” band shows the 95 percent credible band of futures prices when we consider
both the uncertainty in the model parameters and the observation errors. Allowing for observation errors
has a negligible effect on the median value of the estimated futures prices, because errors are assumed
to have zero mean. However, observation errors have a dramatic effect on the 95 percent credible band
of futures prices. The total variability band is much wider than the parameter variability band for short
maturities. As time to maturity increases, however, parameter uncertainty accounts for a larger share of
the futures uncertainty relative to the observation errors.

Figure 2.6 for the lean hog market tells a similar story to its counterpart for the soybean market,
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figure 2.5. The width of the 95 percent “parameter variability” credible band increases with time to
maturity. One striking difference with figure 2.5 is that the 95 percent “total variability” credible band
is slightly wider for short times to maturity. This result is somewhat counterintuitive at first glance.
Note, however, that in equation (2.27) the error term is added to the logarithm of futures prices instead
of futures prices themselves. Thus, when taking the exponential of the logarithm of futures prices
including errors to compute futures prices, a wider band is obtained for larger values of the logarithm
of futures prices. On this particular date (January 15, 2010), futures prices are decreasing with time
to maturity (ignoring seasonal effects). As a result, in this instance the observation error volatility
dominates the volatility in model parameters, which leads to a wider 95 percent credible band with

short times to maturity.
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Figure 2.6: 95 percent credible band of futures prices predicted by Model 3 for lean hog market on
January 15, 2010.
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2.6 Conclusion

With the purpose of developing a method to estimate the long-term futures curve for agricultural fu-
tures, we generalize Schwartz’s two-factor model by allowing for both mean reversion in spot prices and
seasonality. These are key features of agricultural commodity markets. Closed-form futures pricing for-
mulas are derived. We show that Schwartz’s model is a special case of our model. Soybean and lean hog
futures price data from the CME are employed to estimate the models by means of a Bayesian MCMC
algorithm. Estimates for Schwartz’s model are obtained by imposing the corresponding restrictions to
our model.

We show results for the markets during two historical pricing periods as examples. The first example
represents a period of relatively high prices, whereas the second corresponds to a period of low prices. In
both instances the results suggest an intuitive relationship between the short-term futures we observe and
the long-run expected production cost. The addition of mean reversion and seasonality is supported by
the model estimates and futures price projections are improved with their incorporation. The evolution
of this model and the projections of long-term futures prices from it could provide support for the
continued development of agricultural swaps. The price projections could also support development of

long-term price risk management tools and insurance products.
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2.7 Appendix

2.7.1 Appendix A

According to equation (2.22), % = kB (¢,T). Together with the boundary condition 3 (T,T) = 1, this

implies that B (z,T) = exp(kx(t — T)). Also from equation (2.22),

dBa(t,T)

ot ﬁl(th)—i_kyﬁZ(th)

= exp(ke(t —T))+kyBo(t,T).

Therefore, B,(¢,T) = exP(kx(’—Tzz:Z‘P(ky(t—T))

Using the above expressions for f;(¢,T) and (¢, T), equation (2.23) can be written as

PUT)  (r62/2080,7) + W (OBa(e.T) ~ LB 0 TIVBT).
Hence,
_ r—o?/2 v 1 1
atT) = —p—(Eplk(r=T)) = 1)+ — (7 (explhelr =T)) = 1) = (k—y(exp(ky(t =T7))—1)
2 l//h,cos 1 1
Lk e eraen)
{kx[exp(ky(t — T)) cos(2mht) — cos(2mhT )] + 2mh[exp(ky(t — T)) sin(2mht) — sin(2whT)]}
2 Wi sin 1 1
Lk e eraen)
{kelexp(ky(r — T)) sin(2mht) — sin(2whT)] + 2mhlexp(k.(t — T)) cos(2mht) — cos(2mhT)] }
2 2
_%{[% + kZZij‘Z) T (kfy_ ky)z] x [exp(2k(t —T)) — 1]
2
O o exp((k k)~ T)) 1]

e Ttk k)
2

+m[exp(2ky(t =T))—1]}.
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2.7.2 Appendix B

Equation (2.25) can be written as
.xt+A_xt = (r—O')?/Z—kxxt _yt+kx(t))A+\/Z£1J,
VieA =Yt = (‘I/(t) —kyy; + 7Ly(f))A + \/Ksz,t,

where t = iz %, ey Tl—_zl, T is the total number of observation dates, and cov(y ;,& ;) =V if i = j, and is zero

otherwise. The above two equations can be rearranged to yield
2 1
21 = A,x70 + Z (lx,h,cosCOS(ZTChZ‘) + ;Lx’h’sinSin(ZTCht)) + —=E&1,,
= VA

2

, 1

20 = Mot Y (AyncosCos(2mht) + Ay inSin(27ht)) + 7a &1,
h=1

where zj, = 5= — (r— 62 /2 — kyx; — ;) and 2o, = 242" — (y(r) — kyy;). The latter equations can be

expressed as the matrix equality

Z X; 0 Y4l &
_|_
Z 0 X %) &

where Z; = [Zi71/12, Zi2/125 " "5 % (T—l)/lZ] fori=1and?2, n= [Afx,O, 2'x,l,cos, }'x717sins Ax,Z,cos, l)c,Z,Sin] s = [A'y,O,

;Ly,l7cos, \1,sin> )LyZCOSa 7@2 sin] 51 = ;1/12, \/Lxsig/u, RN lAf;‘,7 T— 1)/12] fori =1 and 2, and
I, cos(2mx ), sin(2xx5), cos(4mxi5),  sin(47wx 15)
I, cos2mx ), sin2rx35), cos(4mxF), sin(dmx F)

1, cos(2m x Tl—’zl), sin(27 x 1—21)7 cos(4m x Tl—’zl), sin(4m x vl) |

By employing obvious notation, the above matrix equation can be written more compactly as Z =X I' + &,
where cov(E) =X ® Ir_; and X = %V. This is a standard problem of Bayesian inference on the SUR model.
Giles (2001) points out that I" satisfies a multivariate normal distribution with mean equal to [X (27! ® I7_1)

X]7' X (27! ® Ir_1) Z and variance equal to [X (X' @ Ir_1) X]~".
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2.7.3 Appendix C

Table 2.4: Gelman-Rubin test statistics for the lean hog and soybean futures markets.

Lean Hogs Soybean

Parameters Model 1 Model 2 Model 3 Model 1 Model 2 Model 3
ky 1.047 1.007 1.038 1.001
ke/ky 1.017 1.014 1.050 1.044 1.042 1.047
Ae/ 20 1.010 1.002 1.006 1.013 1.001 1.079
Ay 1 sin 1.014 1.001
Ay 1 cos 1.031 1.006
Ay2 sin 1.006 1.017
Ay 2 cos 1.001 1.032
Uy 1.010 1.001 1.001 1.003 1.002 1.029
Uy 1 sin 1.027 1.006
Uy 1,cos 1.003 1.001
U2 sin 1.001 1.015
Ux2 cos 1.001 1.001
Ue0/Uy0 1.012 1.061 1.084 1.027 1.033 1.032
Uy 1 sin 1.007 1.006
Uy 1 cos 1.001 1.007
Uy sin 1.001 1.040
Uy2 cos 1.008 1.003
Oy 1.004 1.001 1.051 1.002 1.004 1.001
oy 1.009 1.007 1.011 1.068 1.064 1.079
Px,y 1.003 1.045 1.011 1.013 1.004 1.013
p 1.007 1.004 1.001 1.026 1.039 1.007
c, 1.001 1.001 1.002 1.072 1.006 1.001
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CHAPTER 3. Price Mean Reversion, Seasonality, and Options Markets

3.1 Introduction

The Black and Black-Scholes option pricing models assume that spot price volatility increases in
proportion to the square root of time (Black (1976)). This assumption is reasonable for stocks and cur-
rencies but is inconsistent with mean reversion in spot commodity prices. Most agricultural commodity
markets demonstrate mean reversion to production costs (Bessembinder et al. (1995)), which suggests
that prices will eventually revert to this cost because of supply response. If this is true, and if price
volatility is incorrectly assumed to increase in proportion to the square root of time, the fair value of
long-term options will be overestimated. Without an accurate pricing formula, sellers and buyers of
renewable commodity futures options may not be able to agree on a price that they can trade. In this
regard, it is interesting to note that options on key agricultural commodities such as soybeans and lean
hogs do not trade beyond a 12- to 14-month window.

Schwartz (1997) recognized one aspect of this problem in the context of commodity futures. He
had the insight that price imbalances caused by temporary shortages and surpluses would eventually
disappear without impacting the long-run volatility level. For example, an oil shortage can make the
convenience yield greater than the storage cost and this can cause nearby futures prices to exceed the
prices of more distant contracts. Several researchers (Miltersen and Schwartz (1998) and Hilliard and
Reis (1998)) have proposed closed-form option-pricing models that incorporate reversion to the mean
in the convenience yield. However, the spot price in Schwartz’s (1997) two-factor model is assumed to
be trending rather than mean reverting. If convenience yield is a constant, the spot price in the Schwartz
model is assumed to follow a geometric Brownian motion. Therefore, such models are most likely to be
relevant to exhaustible commodity markets such as gold and oil, for which Hotelling’s Principle might

be expected to hold.
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A number of studies report evidence of mean reversion in commodity prices (e.g., Peterson, Ma,
and Ritchie (1992); Allen, Ma, and Pace (1994); Walburger and Foster (1995), Casassus and Collin-
Dufresne (2005)). Cassasus and Collin-Dufresne (2005) developed a three-factor futures model for
non-seasonal commodities. Their model assumes convenience yield is a linear function of spot prices
and interest rates, which induces mean-reversion in prices under the risk-neutral measure. Although
closed-form solutions for the corresponding option valuation formulas are not available based on their
model setup, the authors are able to report European option values using a Fourier inversion approach.
The authors estimated the model using futures prices for solver, gold, and copper. They found empirical
evidence of mean reversion in the spot prices, thereby implying lower estimates of option prices.

We argue that mean reversion in the spot price level as well as in the convenience yield is a key
feature of agricultural commodity markets such as grains and livestock. For example, when prices
are relatively high, supply will increase, which will in turn put downward pressure on prices. On the
demand side, when prices are high, demand will decrease, which will also induce prices to decrease. A
similar story can be told when prices are relatively low.

In the model outlined below, convenience yield consists of two parts. The first part satisfies an
Ornstein-Uhlenbeck process. The second part captures the fact that convenience yield is usually pos-
itively correlated with the spot price. When the first component of convenience yield is stabilized,
the spot price behaves as an Ornstein-Uhlenbeck process. Allowing convenience yield to be a func-
tion of the spot commodity price leads to mean reversion of spot prices under both the historical and
risk-neutral measures. This model structure also incorporates the Schwartz model as a special case.

Seasonality is known to be an empirical characteristic of most commodity markets. It is especially
important for agricultural commodities with seasonal production or demand patterns. Given the same
data set, models that ignore seasonality will likely induce a higher estimated volatility of the factors
than their counterparts augmented with seasonality. This in turn will lead to a prediction of larger
option prices.

Sgrensen (2002) modeled seasonality in agricultural commodity futures. He introduced seasonal-
ity by adding a deterministic seasonal component to the commodity spot price. A closed-form futures
pricing formula is derived based on his one-factor model with seasonality. Richter and Sgrensen (2002)

proposed a three-factor model to explore seasonal patterns in both the spot price level and the volatil-
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ity in commodity markets. They allow a parameter in the drift term of the convenience yield to be a
trigonometric function of time. Seasonality in the volatility term is incorporated by adding a deter-
ministic trigonometric function of time. However, closed-form solutions for futures and option pricing
formulas are not available based on their model setup.

Seasonality is introduced into our model by allowing the parameters in the drift terms of the two
factors (spot price and convenience yield) to be a periodic function of calendar time. The evaluation
of futures and option pricing expressions can be reduced to the problem of solving odinary differential
equations (Duffie, Pan, and Singleton (2000)). Adding seasonality into the model makes the solution
more complicated, since the involved stochastic differential equations are inhomogeneous in time be-
cause the drift coefficients are functions of calendar time. However, we still get closed-form expressions
for both futures and option pricing formulas, which greatly facilitates the empirical work.

A negative relationship between supply/inventories and convenience yields is predicted by the theory
of storage. Thus, the convenience yield from marginal storage is high when inventory is low or supply
is scarce, and the opposite is true when inventory is high or supply is large. Since commodity supply
exhibits seasonality, the convenience yield is also assumed to behave as a mean-reverting process with
seasonality.

We apply a Bayesian Markov Chain Monte Carlo (MCMC) algorithm to estimate our model us-
ing futures prices for two agricultural commodities, soybeans and lean hogs, and for one commercial
commodity, crude oil. At each sample date, we observe a panel of futures prices, which are related to
the latent variables through the futures and option pricing formulas. Following the ideas in Chen and
Scott (1993), we assume that all but two futures contract prices are observed with measurement error.
The latent value of the state variables can be filtered out at each sample date using the futures pricing
formula by inversion based on the two futures contract prices observed without error. The empirical
results support the hypothesis that spot prices in commodity markets are mean reverting, and the speed
of mean reversion is highest in the lean hog market and lowest in the crude oil market. The estimation
shows strong seasonal patterns for agricultural commodities but not for crude oil. The empirical work
suggests that while Schwartz’s model is well suited to the crude oil market; it has limitations in renew-
able commodity markets. The impact of how the basic assumption of mean-reverting spot prices and

seasonality affects the model’s prediction about the price of commodity derivatives with short and long
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times to maturity is shown by comparing Black’s model, Schwartz’s model, and our model.

The rest of this chapter is organized as follows. Section 3.2 uses graphical examples to intuitively
show how the basic assumption of mean reversion will affect the fair value of option prices. In section
3.3, we generalize Schwartz’s two-factor model. Seasonality is also introduced into the proposed model
and four two-factor models are defined. In section 3.4, futures and option pricing formulas are derived.
Section 3.5 describes the empirical model, the data set, and the estimation method. The econometric

analysis and estimation results are discussed in section 3.6. The last section concludes the chapter.

3.2 Graphical examples

Figures 1, 2, and 3 are graphical representations of the three assumptions that underlie the three
models (Black, Schwartz, and our model) and they show how our model differs from those of Schwartz
and Black. All three figures depict the same simulated time series of (the logarithm of) prices x;, and

all contain the upper and lower confidence intervals for these prices at two points in time.

10 Ww [ (I

xt, Conditional Expectations, and 95% Confidence Intervals

Time

Figure 3.1: Behavior of x;, conditional expectations, and 95% confidence intervals under Black’s model

Figure 3.1 shows prices under the standard Black assumption of Brownian motion. It can be ob-
served that the confidence interval for prices increases in proportion to the square root of time. The
heavy solid line shows the expected price path as of time zero and this demonstrates a small amount

of growth as might be expected for the cash prices for some commodities or stocks. If futures markets

www.manaraa.com



40

existed for this asset, this heavy line would reflect the temporal basis. At time 20 the realized cash price
is lower than was expected at time 0 and the heavy dotted line shows the expected price path from this
lower point. All of the price reduction from time O through time 20 is viewed as permanent in this
model. Therefore, the updated expected price path runs parallel to the original but at a level that reflects

the underperformance of price between times 0 and 20.

xt, Conditional Expectations, and 95% Confidence Intervals

Time

Figure 3.2: Behavior of x;, conditional expectations, and 95% confidence intervals under Schwartz’s model

Figure 3.2 shows the Schwartz model, and is otherwise identical to Figure 3.1. A key difference
between Figures 3.1 and 3.2 is that when the price path is updated at time 20, the Schwartz model
recognizes that the price drop that occurred just before time 20 was in part due to a temporary reduction
in the convenience yield (c;) reflecting a temporary surplus of the commodity. The model assumes
that this temporary component will gradually disappear, and therefore it adjusts the expected time path
of cash prices for this expected price recovery. However, once this temporary adjustment vanishes,
Schwartz’s model behaves very much like Black’s.

Figure 3.3 illustrates the model we propose here. The price path after time 20 contains an adjustment
to the temporary imbalance as in Schwartz’s model. However, the model also contains one additional
piece of information. It recognizes that the generally low level of prices observed at time 20 is well be-
low the production costs for this commodity. This suggests a reduction in supply until prices recover to

these expected production costs. Therefore, the heavy dotted line approaches the heavy solid line as the
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Figure 3.3: Behavior of x;, conditional expectations, and 95% confidence intervals under our model

model implicitly adjusts supply and demand so that expected future prices lie on the path representing
expected production costs. This additional piece of information has a dramatic effect on the upper and
lower confidence levels, because the model recognizes that all price deviations around these expected
production costs are of a temporary nature and it therefore tightens the confidence interval around this
price path.

The upper and lower confidence intervals are directly related to the fair option price. Therefore, this
intuitive evidence suggests that when mean reversion in the price level is added to mean reversion in the
convenience yield, the fair option value will be lower. The degree to which models that neglect mean
reversion in the price level overprice option premia will depend on the parameters of the models, but it

is clear that the degree of overpricing will increase with the time to expiration of the option.

3.3 Schwartz’s model and generalization

Schwartz advanced a path-breaking model of commodity prices. His fundamental insight is that
commodity prices are characterized by convenience yields. He postulated that the convenience yield

net of storage cost, ¢;, follows the Ornstein-Uhlenbeck stochastic process,

ey = (e — Koyt + e 1), G0

where u./k. is the long-run mean of the convenience yield, k. > 0 is the convenience yield’s speed of
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mean reversion, and dw,(t) is a Wiener process. However, Schwartz assumes that the commodity spot

price process, S;, behaves as a geometric Brownian motion, when convenience yield ¢; is a constant,
dSt — (us - Ct)Stdt + GsStdWS(t), (32)

where dw;(t) is a Wiener process and dw,(t)dw;(t) = ps.dt. Defining x, = In(S;), application of Ito’s

Lemma yields the stochastic process for x;,
dx; = (uy — ¢;)dt + odwi (1), (3.3)

where u, = u; — 62 /2, 6y = Oy, dw(t) = dwy(t), and py. = pse. The expected rate of return to the
commodity holder consists of the expected relative price change (E(dS;/S;)) plus the net convenience
yield (¢;). In equilibrium, the expected rate of return to the commodity holder must equal the risk-free
rate (r) plus the risk premium associated with the stochastic process x; (Ay), us —¢; +c¢; = r+ A,. Then,

the corresponding risk-neutral processes are

de; = (ue —kee, — Ac)dt + o.dw?(t)and (3.4)

ds;, = (r—c,)Sidt+ 0,8,dw?(t), (3.5)

where A, is the market price for the risk associated with stochastic process of ¢, and dw2(r) and dw?(¢)
are the Wiener processes under the equivalent martingale measure. By applying Ito’s lemma, the risk-
neutral process of dx; is

dx; = (r—62/2—¢,)dt + o, dw?(1). (3.6)

Note that dw@ (1) = dw@(r) and dw@(1)dw2 (1) = pyedt. We call this Model 1 for convenience. Schwartz
derived futures prices based on this model. The corresponding option prices were obtained by Miltersen
and Schwartz (1998) and Hilliard and Reis (1998).

3.3.1 Price mean reversion

A stylized fact of commodity markets is that convenience yields are positively associated with spot
prices. Typically, when a commodity is in relatively short supply, its price is high and its convenience
yield is high as well. Hence, the convenience yield net of storage costs is postulated to consist of the

following function of the logarithm of the spot price:

Ct =Vt + kxx,. (37)
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The first component of ¢, is assumed to follow the Ornstein-Uhlenbeck stochastic process
dy; = (uy — kyy;)dt + oydwy (1), (3.3)

where dw,(t)dwy(t) = pxydt.

Then, the corresponding stochastic process for the spot prices is the following:
dSt = [us —Yr— kx ln(S,)]Stdt + GsStdWs (t). (39)

Ito’s Lemma yields the following Ornstein-Uhlenbeck stochastic process for the logarithm of the spot

prices:
dx; = (uy—yr —kex)dt + Gdwy(1). (3.10)

In equilibrium, the instantaneous expected total return to commodity holders must equal the risk-free

rate plus the associated market price of risk,

r+A = (us(t) —yr —kexe) + (v + kaxe) (3.11)

= (us(t) =y —kexe) — Ax = 1 — (3 +hkuxy). (3.12)
Therefore, the risk-neutral process of dS; may be written as
dS, = [r— (y; + kex;))Sidt + 6,S,dw€(t). (3.13)
Then, applying Ito’s lemma yields
dx; = [r—062/2— (yi +kexy)|dt + 0, dw(1). (3.14)
Letting the market price for the y; risk be A,, the risk-neutral process of dy; is
dyr = (uy — kyy; — Ay)dt + o,dwS (1), (3.15)

where dw? (1)dw2 (1) = pydt.
This generalized model is referred to as Model 2. It is clear that Model 1 is a special case of Model

2. If k, is restricted to be equal to zero and ¢; = y;, then these two models are identical. The key
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difference between Model 1 and Model 2 is that, when ¢; is constant, the log of spot prices in Model 1
exhibits geometric Brownian motion. In contrast, when y; is constant, the log of spot prices in Model 2
satisfies an Ornstein-Uhlenbeck stochastic process. Empirically, testing whether k, is equal to zero or

not allows us to determine whether the spot prices are mean reverting or not in a given market.

3.3.2 Seasonality

So far we have assumed that all parameters are constant throughout the year. However, most com-
modity markets differ from the markets for stocks, bonds, and other conventional financial assets, in
that they typically exhibit seasonal patterns. For example, prices for annual crops are typically high
in the pre-harvest season and low at peak-harvest, and pork prices are usually high during the barbe-
cue season. To capture this feature, the periodicity is introduced in selected parameters by a truncated
Fourier series. We add seasonality into the spot price by setting u, in equations (3.3) and (3.10) to be a

periodic deterministic function of time,

H
uc(t) = uxo+ Y [thxpcosCos(2mht) + uy j sinSin(27ht)] (3.16)
h=1

where H determines the number of terms in the sum and u, o, x4 cos and uy j, sin are constant seasonal
parameters. H is selected to be equal to 2. This choice is based on the Akaike Information Criterion
(AIC); see, e.g., Harvey (1981). Note that if uy j cos = Uxpsin = 0, for VA > 1, then the model does
not exhibit seasonality. The long-term mean parameter of the first component of convenience yield in
equation (3.8), uy, is also generalized to allow for seasonality, with a functional form for u,(¢) analogous
to the one for u,(¢) shown above. If the convenience yield does not display seasonal behavior, then
Uy h,cos = Uy hsin = 0 for Vh > 1.

Similar to the expression for u,, the risk premiums A, and A, in the previous section are also assumed

to be periodic functions of calendar time,

H
Ai(t) = Aio+ Y [AincosCos(2mht) + Ai psinSin(27ht)] (3.17)
h=1

where i = x,y. For simplicity, Model 1 and Model 2 augmented with seasonality are referred to as Model
3 and Model 4, respectively. The risk-neutral processes (3.14) and (3.15) incorporating seasonality
provide us the basic foundations for pricing futures and option contracts on commodity markets, which

we address in the next section.
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3.4 Futures and option pricing

Commodity spot prices and convenience yields are modeled in continuous time as a system of stochastic
differential equations in an affine term structure class. The key advantage of affine models is that
they are tractable for asset pricing purposes. We rely on the traditional no-arbitrage approach to price
commodity derivatives. The seasonality part makes the derivation more complicated. However, we still
get closed-form solutions for the pricing formulas. The following two subsections show how to price
commodity futures and options written on commodity futures.

3.4.1 Futures pricing

The risk-neutral process of the two latent variables defined in Section 3 for the advocated model can

be written as

dx r—02/2 =k — c? 1y O O,
"I ~nN / T, Pox 1l e | (3.18)
dy: uy (1) = Ay (1) — Ky PxyO:Cy Oy
Define
H
0(t) = uy(t) — Ay(1) = 60+ Y [6h.cosCoS(27ht) + 6} sinSin(27ht )] , (3.19)
h=1

where 6y = Uyo — ly,Ov 6h,cos = Uyhcos — A'y,h,cow and 6h,sin = Uy hsin — A'y,h,sin- Define KO(I) = [)" -

ke 1 62 PyOiO
62/2,0t)]", k1 = ' V= ! VT and g, = [x;,y/]T. Then,
0 k P00, O
du, = (%0(t) — K1 1y )dt +Vdw2(t). (3.20)

Given that u(r) follows an affine diffusion under the martingale measure, it is convenient to apply
the method proposed by Duffie, Pan, and Singleton (DPS) (2000)' to get a closed-form solution for the

futures price at date  maturing at time 7" as follows:

F(t,T) = EP[S(T)]
= EP{exp[¢o+ ¢ u(T)}
= expla(t,T)+B(t,T)u(t)]

= Xr=W(F@t,T)) =a(,T)+BET)ur), (3.21)

!1n their Appendix B, the authors also allow for a time-dependent coefficient, and the method is still valid.
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where E,Q [.] is the expectation operation under the risk-neutral probability measure. Since the first factor
is the log of the spot price, ¢o = 0 and ¢T = [1,0]. Equations o(¢,T) and B(¢,T) need to satisfy the
following ordinary differential equations (ODEs)
B(.T) = wB@.T) (3.22)
/ 1
a(t,T) = —xo(t)-B(t,T)— 5[3T(t,T)V[3(t,T) (3.23)
with boundary conditions B(7,T) = ¢ and a(T,T) = ¢y, where o (1,T) = % and B'(t,T) =

9BLT) The solution for (7, T) and B(#,T) is outlined in Appendix A.

3.4.2 Option pricing

The process to solve for the European option pricing expression is very similar to the one we propose
for deriving the futures price formula. Let C[F(¢,T),K,t,T;] denote the price at time ¢ of a European
call option with a strike price of K expiring at 71 on a futures contract that expires at time 7 > 7.
The payoff of such an option at the expiration date is max[F (7},T) — K, 0]. Standard arguments can be

applied to show that its price at time ¢ is given by
CIF(1,T),K,t,T1] = exp|r(t — T\)| EZ{max[F (T1,T) — K,0]}. (3.24)

The moment-generating function of the logarithm of futures prices at time 77 under the equivalent

martingale measure is defined by
M (1, 1) = B {expleIn(F (T3, 7))} (3.25)

Using the futures price formula derived in the previous section to substitute for In(F(77,7)), we obtain

Mir(r () = ES{expleIn(F(T1,T))]} (3.26)
= EX{exp(za(Ti,T)+2B(Ty, T)u(T1))} (3.27)
= exp{za(T1,T)}E2{exp(zB1(Ti, T )xr, +2Ba(T1,T)yr, )} (3.28)

The expectation term on the right-hand side is of the same form as equation (2.3) in DPS, so their
method can be applied again. The underlying risk-neutral process does not change so the ODEs do not

change. However, the boundary conditions are different. Let the solution to the expectation term be

E{exp@Bu(d, T)xr, +2B2(Th, T)yr, )} = explA (1, Ti) +B(t, T ) (1)) (3.29)
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Then A(z,T1) and B(z,T;) satisfy the following ODEs:

B(t,T)) = «'B(t,T)) (3.30)

AwT) = —Ko(t)-B(t,Tl)—%BT(t,Tl)VB(t,TI), (331)

where A’ (t,Th) = 9AS;T1) B (t,Th) = aBg;Tl) , and the following boundary conditions are satisfied:

B\(T,T) = zBi(Th,T), (3.32)
Bz(Tl,Tl) = Zﬁz(T],T), and (333)
ATy, Ty) = 0. (3.34)

Solving this system of ODEs using the same strategy as employed to solve for the futures price, we get
By (t,T1) = zPi(¢,T) and By (1, T1) = zPa(¢,T).
By definition of 1, (¢, T) and m,(¢,T) from Appendix A,
A Tr) = (Mm@, T) —m(Th, 1)z + (a0, T) = ma(T1,T))2".
Therefore, the following expression for the moment-generating function can be obtained:
Myjr(r,1))(2) = expl@ (¢, 71, T)z+ %G(t, T1,T)°2),
where

ot N, T) = m(N,T)+m(T,T)+m@,T)—m(T,T)+Bi(t,T)x + B¢, T)y, (3.35)
= UZ(TlaT) +m (I7T) +ﬁ1 (t7T)xl‘+ﬁ2(t7T)yt and (336)

o(t,T1,T) = 2[m(t,T)—m(Ti,T)]. (3.37)

The specific form of the moment-generating function reminds us that In[F (77, T)] is distributed as a

normal random variable with mean @ (¢, Ty, T) and variance o (¢, Ty, T)?. In addition,

XPIO+ 507 = exply(1,T) + (6, T) + By (4. T+ Ba(t, Ty

= expla(t,T)+B(t,T)u(t) = F(t,T). (3.38)
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Using the probability density function of In[F(7;,T)], it is straightforward to derive the option price
from equation (16) (see Appendix B). For notational simplicity, we define Fr, = F(T1,T). Then
i 1 1 [In(F,) —@]>
Emax(Fr K0 = [ (A —K)exp{— [()] }dln(FTl)
2102 2 o
In(K)

and the analytical solution for the price of the call option is

C[F(t,T),K,t,Ti]| = exp[r(t —Th)][F(¢t,T)N (d) — KN (d2)], (3.39)

In[F(+,T)/K]+0.50(¢,T1,T)?
O'(I,Tl ,T)

where .47(+) is the standard normal cumulative distribution function, d; = , and

_ In[F(+,T)/K]-0.56(¢,T,T)?
dy = o(t,11,7) -

Given a strike price, the underlining futures price and the time to maturity, the option price depends
on 6(t,T;,T), which is a function of m,(.,.). See the definition of 1(.,.) in appendix A, seasonal
parameters are not included. Lo and Wang (1995) also recognize that the parameters in the drift do
not enter the option pricing formula. They generalize the Black-Scholes model to include a trending
Ornstein- Uhlenbeck process in stock prices. They show that, in the end, the option formula based
on their model is identical to the Black-Scholes formula. They also show that because their model
provides a higher estimated volatility, it results in predicting a higher option value than Black Scholes.
In contrast, in our model, which is developed with commodities, and not stocks in mind, introduces
a mean reversion parameter into the drift term and k, does enter into the option pricing formula. Our
option pricing formula is identical to the option formula based on Schwartz’s two factor model, only if
we take the limit of option pricing formula, as k, approaches zero. Though seasonal parameters do not
affect the formula, we will show in Section 6 that they do affect the estimates of the other parameters.

Put-call parity can be used to get the analogous European put option price as follows:
P[F(t,T),K,t,Ti] = explr(t—T)|EZ{max[K — F(T;,T),0]}
= exp[r(t—T1)]|E{max[F(T},T) —K,0| + K — F(T;,T)}
= explr(t — T)|{EE[max(F(T;,T) — K,0] + K — EC[F (T}, T)]}.
By definition, exp[r(t — T})|EZ[max(F (Ti,T) — K,0] = C[F(t,T),K,t,T;]. Since the futures price

F(Ty,T) itself is a martingale under the risk-neutral measure, EZ[F(T1,T)] = F(t,T). So, the put

option formula can be written as

PIE(tsT)eKst, T)| = C[F (1,T),K,t,T\] +exp[r(t — T\)|[K — F(,T)]. (3.40)
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3.5 Empirical analysis

3.5.1 Empirical model

In our model, we employ the log of the spot price and the convenience yield as the two latent state

variables. Recall equation (3.20) and define
Ar) = . (3.41)

Then, the historical process of the two latent variables can be written in matrix form as
du, ~ N((xo(t) — ki +A(r))dt, Vdt). (3.42)

We apply the first-order Euler discretized version of the continuous time model (3.42) with the dis-

cretization interval A = 1—12 to reflect monthly data. The discretized empirical model is
Hea =ty + (Ko(t) — Kt + A1) A+ VAg, & ~N(0y1),V). (3.43)

Equation (3.43) can be estimated from the two observed futures prices assumed to be perfectly corre-
lated with the factors. But additional futures and option prices are observed from the markets, and the
likelihood of observing them can be inferred from the following empirical futures and option models.
According to the futures pricing formula outlined in Section 4, X, 7 = In(F(¢,T)) = a(¢,T) +
B(z,T)u(t). Suppose we have a historical data set consisting of M > 2 series of (logarithms of) fu-
tures prices with M different times to maturity. Among the M futures contracts with distinct maturity
dates, two of the prices are assumed to be perfectly correlated with the state variables u,, and the re-
maining M — 2 are assumed to be observed with normally distributed errors ¢;. Denote the vector with

the two perfectly correlated futures prices with X = [XZOTIO ,XIOTZO]T and their maturity dates [T}, 7|7,

and the (M —2) imperfectly correlated futures with X = [X ., X 7., - - ’Xt.,T,l},z}T and their maturity
dates [Ty, , T3y _,]*. So,

XtC,)Tlo . Ot(t, Tlo) n Bl (t7 Tlo) BZ(Zv Tlo) Xt

X're o, TZO) Bz, Tzo) Ba(z, Tzo) Yt

2
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Xz.,Tl‘ Ot(l‘, Tl.) ﬁl (t, Tl.) ﬁZ (tv Tl.) €1
Xt

Yt
X're o(r, Ty ) Bi(t, Ty —2) Ba(t, T3 5) €r.M—2

~ N(Q((M—z)xl)a 0, Q).
€r M2
Putting them into matrix form, we get
X’ = a°+B°y, and (3.44)
X =a"+ B +e, (3.45)
where O((y_2)x1) is an (M — 2) vector of zeros, 6?2 > 01is a scalar, Q is an (M —2) x (M — 2) matrix,
with the i, jth element equal to pi=/!, for p € (—1,1), and a(z,T) and B(z,T) as defined in Section
4. Since the two latent factors are not observed, direct estimation of the historical evolution equation
(3.43) is not feasible. However, given equation (3.44), if the 2 x 2 matrix ° is invertible, the factors
can be solved for as i, = (8°)~!(X° — «°). In this way, the value of the state variables can be exactly
filtered out at each sample date by inversion based on the two futures prices observed without error.
Our estimation strategy is capable of using both options and futures. As with the imperfectly corre-
lated futures prices, option prices are also assumed to be observed with errors. According to equations

(3.39) and (3.40), the empirical model is specified as

In(C[F(t,T),K,t,T1]) = In(exp[r(t—T\)][F(t,T)N(di)—KN(d>)]) + &, and

In(P[F(t,T),K,t,T1]) = In(exp[r(t—T)][F(¢t,T)N(d1)—KN(d>)]

+exp[r(t = T)][K—F(t,T)]) + &,

where & . ~ N(0,07) and &, ~ N(0, GI%). We add a serially and cross-sectionally uncorrelated mean-
zero disturbance into the put and call option formulas to take into account nonsimultaneity of the ob-
servations, errors in the data, and other potential sources of errors. The set of model parameters to be
estimated is V, Ay, A, iy, uy, ky, and k. In addition, estimation yields parameter values associated with

the model’s goodness of fit (i.e., 0, and p for the estimation using futures data only, and o,, p, O, and

Oprtor the estimationrelying,on both futures and options data).
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3.5.2 Description of the data

The futures data employed to estimate the models consist of monthly observations of futures prices
for one commercial commodity, crude oil, and two agricultural commodities, soybeans and lean hogs.
Panel data of soybean and lean hog futures prices are obtained from the Chicago Mercantile Exchange
(CME). Both futures markets are observed monthly from January 1978 through January 2010, for a
total of 385 observation dates. The futures prices involved are the settlement prices for the 15th calendar
day of the month. If the 15th of the month falls on a weekend or a holiday, the nearest trading day’s
settlement price is used. The settlement prices observed with zero trading volume are discarded, because
it is set by the administration of CME for the purpose of calculating margins. In other words, these prices
are not actual trading prices. The price units are cents/bushel and cents/pound, for soybean futures, and
lean hogs futures, respectively.

Since the longest maturity in the soybean (lean hogs) futures sample is 34 (19) months, the ideal
data set would consist of a panel of 385 x 34 = 13,090 (385 x 19 = 7,315) observations. However,
futures for some maturities are not traded. Soybean futures currently have only seven maturity months:
January, March, May, July, August, September, and November. Lean hog futures have eight maturity
months: February, April, May, June, July, August, October, and December. In addition, data with far-
away maturities are often missing because they are not traded. For example, on January 1980 only
seven prices are observed for soybean futures, corresponding to the expiration dates of March, May,
July, August, September, and November of 1980 and January of 1981. Letting the i, jth element of our
data set be the price of the futures contract that expires j months after date i, this means that all elements
of the 25th row of our soybean data set are missing except 2nd, 4th, 6th, 7th, 8th, 10th, and 12th column.
As a result, the total number of observations available on soybean (lean hog) futures prices are 3,157
(3,032). Similarly, crude oil futures prices are observed from NYMEX during the period December
1983 to December 2009. Crude oil futures are listed in dollars per barrel and are available in every
month. The longest time to maturity in the sample period is 84 months. In total, 5,528 crude oil futures
prices are observed. There are missing observations from the ideal data set for the same reason as for
the soybean and lean hogs futures markets.

For soybeans, we also estimated the model using data on option prices written on futures. Soybean
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futures options are observed from 1988 until 2010, with 265 observation dates. Futures option contracts
expire around three-quarters of a month prior to the expiration of the underlying futures contracts.

At any particular date, a variety of option contracts with different underlying futures contracts and/or
strike prices are traded. The longest maturity date for the option’s underlying futures contract is 13
months in our sample. No option contracts are written on futures with more than 13 months until
maturity.

Our model applies only to European options, while the options data correspond to American op-
tions. American options are more valuable than their European counterparts, because of the existence
of early exercise opportunity for the former. However, after calculating values for both American- and
European-type options, Plato (1985) concluded that the difference between the two for near-the-money
option values is negligible. Hence, we estimate the model using only premiums for options with strike
prices immediately above and immediately below the corresponding observed futures price. Our ideal
option premium data set consists of 6,890 observations for call and put options. However, only 3,676

(3,413) call (put) option prices are observed during the sample period because of limited trading.

3.5.3 Empirical method

Bayesian MCMC methods are employed to estimate the parameters associated with the advocated
model. The risk-free interest rate (r) is a constant in our two-factor model and is fixed at 5%.>
Define 4; = M'i,O’)Li,Lcom)Li,l,sina)Li72,cos,)ti,27sin]’ i = [”i,Oaui,l,COSaui,l,sim”i,Z,COSa”i,Z,sin] for i = x,y, and

0 = [60, 01 cos; O1 sin, 62.c0s, 02.5in]. We use non-informative priors for §,kx, ky,V,p,Ay, and A,. The prior

: . 2 2 52 .
information for o, 6., 6, is proposed as follows:

O, ~ Inv-xz(VS,Geo)’

6> ~ Inv-x*(v%,6%), and
2 20,0 0
o, ~ Imw-x°(v,,0p).

The parameters for the lean hog and crude oil markets are estimated using futures data only. We es-

timate the parameters for the soybean market using two different data sets. First, we use futures data

2This model can be extended by explicitly modeling the stochastic interest rate. However, the pricing error for commodity
futures that arises from ignoring the stochastic nature of interest rate is negligible; see, e.g., the discussion in Schwartz (1997)
and Trolle and Schwartz (2009).

www.manaraa.com



53

only to estimate the parameter set {V, Zy, Zx, é,kx,ky, p,0. 4.3 Then the whole panel data comprising
both futures and option prices across different maturities and exercise prices are employed to esti-
mate {V,X_;,Xx,é,kx,ky,p,ce}lg, along with o, and ©,. By comparing {V,Xy,ix, é,kx,ky,p,oe}A and
{V, Xy, fx, é,kx, ky,p, o, }2, we can assess whether option prices are driven by the same set of underlying
parameters as futures.

The MCMC empirical method described here is designed to estimate Model 4 using both futures
and options data. Models 1, 2, and 3, and/or estimation using futures data only can be easily retrieved by
imposing the corresponding restrictions into the procedure. The MCMC iteration steps are as follows.

Step 1. Initialization: Specify starting values for parameter and missing observations

(0)’@(0)’@(0)’ §(°>,k§°),k§0),p(°), 66(0) GC(O)’ G[()O)}.
Let ®(_]l represent all the components of ®\/), except v, at their current values.

Step 2. Compute the unobserved factors /.Lt( J) by solving equation (3.44).*

Step 3. Given [ut(j),V(-i),@(j)

,Xx(‘),de(”,crg’),cl(,])], estimate [9(-"“),k)(/+1),k§j+l), pU*1] by an
effective adaptive, general purpose MCMC algorithm called t-walk developed by Christen and Fox
(2010). The t-walk compares the likelihood of observing futures and option prices and state variables
given (i.1) - (i.4) (the likelihood given existing parameter values) with (ii.1) - (ii.4) (the likelihood given
proposal parameter values). We use C; and P, to represent C[F(¢,T),K,t,T1], and P|F(¢,T),K,t,Ti]
respectively,
where (i.1) [X? — o) — B'(j)ﬂr(j)] ~ N2y, 00 QU)),

(12) [ = 1 = (7 (1) = ki + A0 D) /A VA~ Nty V),

(i.3) In(Gy) — In{explr(s — T][F (1, T)N(dy)) — KN(d5)]) ~ N(0,687),

(i.4) in(R) — In(explr(c = T)][F(t, T)N () — KN (d)])

—exp[r(r - mnK— F(1,T)]) ~N(0,0;'"),

(ii.1) XY — aelpror) — Beron) u PP L N4y 2).c1), 02 QPP)),

(ii.2) uffZ’” —uf”’”’” (577 (0) = K" PP+ A1) D) /8] VB~ N Q) V),
(ii.3) In(C,) — In(exp[r(t — TD)[F (1, T)N(d{"")) — KN(d5""")]) ~ N (0,02,

(i1.4) In(P,) — In(exp[r(t — T1))[F (r, T)N(d\""™") — KN(d""""))] — explr(r — Ti )] [K -

3parameter it can be recovered by using equation (3.12) after we estimate ix; ity can be recovered by equation (3.19) after

we estimate 6 and /'L_;-.
4The perfectly correlated futures prices are selected to be among the observed data.

www.manaraa.com



54

o(i
F(1,1))) ~N(0,0;"),
where [.L,(p oP) i computed from equation (3.44) using é(pVOP),k)Ep op ), and kﬁp "P) " The unobserved

prices in X/, P, and pVare then updated after obtaining [0U+1), K/ H),k)(,j D pl+D)], using

equations (3.21), (3.39), (3.40), and (3.44).

Step 4. Given [u( 7 gl k(jH),kﬁjH),p(f“),?fym , Zx(]), O'em, Gﬁj), c,(,f)], use the Metropolis-Hastings

algorithm to generate vU+D | as follows.

Generate V(P"°P) ~ Inv-Wisharty ops—3((Nobs —3)V 1)),

PV(V prop) |®J , (])Ct(J)vP 7 “t(]‘))Pr(V(prop)‘v(j))5
( ‘@] J) C(J) ( j) /,t,(j))Pr(VU)\V(/’”’P))

Calculate the acceptance ratio, R =
Generate a random variable y from a standard unlform distribution.

If y <R, VU+D = y(rrop) Otherwise VU = v (),

Step 5. Update the unobserved futures and option prices to get X,(j H),Ct(j H),Pt(j ) and ,u,(j D

given [VU+D G0+ D (0] ying equations (3.21), (3.39), (3.40), and (3.44).

Js
Step 6. Given [VUT1), ,LL(JH) é(”]) A k§1+1) p(j“),cre(j) ng),algj)}],drawﬂ,y b andk b,
7L

Recall from equation (3.43) that and ﬂ,y can be drawn from a multivariate normal distribu-

tion.

(+1) 2(j+1) .

s Ax .Ut 6" 6,”], compute o;

Step7. Given [£, T UV y U0, 100 gD g+ Gt

VSGS—H’lng
vngnf

o2t | X,,©’ o, ~ Inv-x*(V2 +ny, ), where ny is the total number of observed futures

prices, and v, is the mean squared error of observed futures prices.

Step 8. Given [A," 7, AT wUn f U GUn 10D 10D 5040 G200 600 generate

o2t .
. . 00
o2t |G, 0 o ~ Inv-x (V0 + 1, %), where 7, is the total number of observed call option

prices, and v, is the mean squared error of observed call option prices.

Step 9. Given [,V VY e g+ GG gD 10D 500 U 60U generate

G[%(J+1):
j - + : .
G,% D) |P,0@ o, ~ Inv- xz(vg +np, %vap) where n,, is the total number of observed put option

prices, and v, is the mean squared error of observed put option prices.

5 Calculating Pr(V (P7P) | ®£V7X,(j)7C,(j>71’,('i)7u,(j)) and Pr(vU) | @J;V7X,(j),C,(j),P,(j)7u,(j)) will again resort to the em-
pirical equations (i.1) to (i.4).
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Step 10. Set j = j+ 1.
Step 11. If the maximum iteration is reached, stop. Otherwise, go to Step 2.

Note that Steps 8 and 9 are necessary only if the option data set is also used in estimating the model.

3.6 Estimation results

The Bayesian MCMC procedure is performed using four different initial values of the parameters for
two million iterations on the four models in each market. The first one million iterations are discarded.
We perform Gelman and Rubin tests on the remaining one million iterations for the four chains. All
of the chains converge adequately for the four models in all markets. All of the tables reporting results
show the 2.5, 50, and 97.5 percentiles of the posterior probability band for the corresponding parameter.

3.6.1 Lean hog market

Parameter estimates for the lean hog market are shown in Table 3.1. It is observed that seasonality
plays a significant role in the lean hog market. In Model 4, all of the seasonal parameters are signif-
icantly different from zero. In Model 3, there is only one seasonal parameter that is not significantly
different from zero (uy,) 5in). The estimates of o, describe the inferred standard deviation on the noise

terms that allow for deviations between theoretical and observed (log) futures prices.
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Seasonality has a very large impact on the model’s ability to fit the historical futures data. As we can
see from Table 3.1, models with seasonality estimates have a significantly lower value of ¢ than their
counterparts without seasonality, which is a signal of better fitting the observed data set. The signifi-
cance of the seasonality parameters suggests that the lean hog market exhibits a strong seasonal pattern.
If prices are characterized by seasonal fluctuations and the model fails to incorporate them, the move-
ment of the factors caused by the seasonal pattern will be unnecessarily included in the instantaneous
volatility term. In other words, fitting models without seasonality to seasonal data yields significantly
higher estimates of oy and o, than the models augmented with seasonality, which is confirmed by the
empirical results in Table 3.1. One can easily check that, given all other variables equal, higher values
of oy and oy will induce higher option premiums.

A significantly positive k, is estimated in both Models 2 and 4, which supports the hypothesis that
convenience yield is a function of the spot price. This also implies that the spot price in the lean hog
market is mean reverting. Comparing Model 1 and Model 3 with Model 2 and Model 4 respectively, we
can see that the correlation coefficient between the two factors is significantly smaller in Model 2 and
Model 4, after we set the convenience yield to be a function of the log of the spot price. The highest
speed of adjustment in the spot price and the highest speed of mean reversion in convenience yield is
observed in this market (compared to the soybean and the crude oil markets). One possible reason for
this fact is that the lean hog market has the shortest production cycle, which allows producers to adjust
the supply faster. The total expected return on the spot price (u,) is not significantly different from
zero in all four models. The nonseasonal part of market price of convenience yield risk (4,) are all
significantly negative except in Model 4.

Figures 3.4 and 3.5 show the term structure of futures prices implied by the four models on January
15, 2010, and December 16, 2002, respectively.

On January 15, 2010, the spot price on the lean hog market was high relative to production costs. For
contracts with a short time to maturity, the curvature of the futures curve implied by the Schwartz model
depends on the relative value of convenience yield. However, in the long run, the futures curve implied
by the Schwartz model (Model 1) depends on the risk-neutral drift of the spot price process. If we
evaluate the drift at the risk-neutral long-run mean of convenience yield, it is negative. Consequently,

the futures curve has a constant negative slope in the long run. Model 2 incorporates mean reversion
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Figure 3.4: Projection of lean hog futures prices on Jan. 15, 2010

in the spot price. So when the spot price is relatively high, the futures curve implied by Model 2 is
expected to decrease at a faster rate initially than the futures curve implied by the Schwartz model and
then to flatten out as prices approach the market’s estimate of production costs. This long-run futures
price (F (t,0)) is independent of the current spot price and convenience yield. The futures curve implied
by Model 4 (Model 3) follows the trend of Model 2 (Model 1), but with seasonality.

It is clear that futures prices implied by Model 4 fit the observed prices more precisely compared
to those models that ignore seasonality. A local maximum is observed when the time to maturity is
six months corresponding to a July maturity date. July is the traditional barbecue season in the U.S.,
when demand for pork is relatively high, and this is consistent with our observation of historical futures
prices.

In contrast to January 15, 2010, the spot price for lean hogs was relatively low on December 16,
2002. With mean reversion imbedded, Model 2 predicts that the futures curve will increase at a decreas-
ing rate and converge to the long-run futures price F (z, o). On the other hand, while the curvature of the
futures curve implied by the Schwartz model with a short time to maturity depends on the relative level
of spot price and convenience yield on that date, with longer-term maturity futures the futures curve is
predicted to be decreasing regardless of the fact that the spot price today may have already been well

below production costs.
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Figure 3.5: Projection of lean hog futures prices on Dec. 16, 2002

Of particular interest are the prices of options on futures. Equation (3.39) shows that at-the-money
call option prices are an increasing function of the underlying futures prices. To compute option prices,
we use the observed futures prices. When they are not available, we use model-implied futures prices to
calculate the corresponding model’s implied option price. However, different models predict different
futures prices. For example, in Figure 5, Models 2 and 4 predict much higher futures price than Models
1 and 3, respectively. So, in order to reasonably compare the four models’ predictions of call option
premia given the seasonality and mean reversion assumptions, it is best to look at the normalized at-the-
money call options (option premium/underlining futures price), which are shown in Figure 6. Black’s
model is also employed to predict the normalized at-the-money call option premiums. We did not
estimate Black’s model using the futures data set; instead, we observed all the option contracts on
January 15, 2010, then calculated the implied volatility and took the average to calculate Black’s implied
normalized option curve.

Figure 3.6 shows the term structure of normalized at-the-money call option premiums on January
15, 2010. The horizontal axis denotes time to maturity of the call option, whereas the vertical axis is
the value of the normalized call premium. It is clear that the one-factor model (Black’s model) predicts
the highest option value among the five models. When we compare Model 1 (Model 3) with Model 2

(Model 4), we observe that the predictions from the two models are very close when the time to maturity
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Figure 3.6: Projection of normalized at-the-money call option prices: lean hogs

of the underlying future contracts is less than 18 months. However, as time to maturity increases, the
difference becomes economically significant. This discrepancy is consistent with the key assumption of
mean-reversion in the spot price in Models 2 and 4. When time to maturity is over 50 months, the option
premium predicted by Models 2 and 4 approach a constant. The difference between Model 1 (Model
2) and Model 3 (Model 4) is seasonality. As we observed from Table 3.1, models augmented with
seasonality estimate a significantly smaller o, and o, which will in turn reduce the option premium.
This is consistent with Figure 3.6, which shows that the option curve implied by Model 1 (Model 2) lies

on top of the curve for Model 3 (Model 4).

3.6.2 Soybean market

Results for the soybean data estimated using futures prices only and both futures prices and options
prices are listed in Tables 3.2 and 3.3 respectively. Comparing Table 3.2 with Table 3.3, we can see
that the estimated parameters from the two data sets are very similar. There is a large overlap between
the 95% estimated posterior intervals. We cannot reject the hypothesis that {V, fy,/fx, é,kx,ky, AT

is equal to {V,?Ty,)_:x, é,kx,ky,p, o.}B.
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Parameter k, is significantly positive, which provides empirical support for the postulation that the
process of spot prices in the soybean market is mean reverting. Parameter u, in Schwartz’s model
describes the expected appreciation rate of the non-stationary state variable (log of the spot price), and
is significantly positive. The estimates in Table 3.2 indicate that the mean-reversion parameters k. and
ky are positive in Model 1 and Model 2, respectively; hence that the state variable c¢; in the Schwartz
model and y; in Model 2 are stationary in the soybean market. The median of the estimated k. and k, is
about 1.06, corresponding to half-lives of 7.7 months.® Parameter u, is significantly positive in Model
1 and Model 3, which implies that the long-run mean of the convenience yield in the soybean market is
positive. Parameter u, is significantly negative in Model 2 and Model 4. However, convenience yield in
Model 2 and 4 is defined as ¢; = y; + k.x;. If we take the long-run mean of y,, and x; to evaluate ¢, it is
also positive.

All of the models yield a similar instantaneous volatility and instantaneous correlation coefficient
for the two Gaussian factors. Although k; is statistically positive, its magnitude is small and it has little
impact on the model’s ability to fit the historical data. Comparing Model 1 (Model 3) with Model 2
(Model 4), there is no significant difference between the estimated 6. Seasonality is also important
and significant in this market. There is only one seasonality parameter (A, | .os) that is not significantly
different from zero in Models 3 and 4. Furthermore, the models with seasonality (Model 4 and Model
3) yield a significantly smaller 62 than their counterparts without seasonality (Model 2 and Model 1).
The non-seasonal part of the risk premia associated with the convenience yield process is significantly
negative in all of the models.

The estimates of o, 6., and 0, describe the inferred standard deviation of the noise terms that
allow for some deviation between theoretical and observed (log) futures prices, call option prices, and
put option prices, respectively. In Table 3.3, 67 is significantly smaller in the models augmented with
seasonality; it is about 2.6% of the soybean futures prices. The median estimates of o, and o, are also
smaller in Model 3 and Model 4; however, they are not significantly lower.

Figure 3.7 shows the projection of normalized at-the-money call option prices for the soybean mar-

ket on January 15, 2010, corresponding to Models 1 through 4 and Black’s model. It is observed that

6 The half-life expresses the time it takes before a given shock to this process is expected to have leveled off by half of the
shock; the half-life in the Ornstein-Uhlenbeck process is calculated as In(2) /k. In our case In(2)/1.07 = 0.65 years, which is
about 7.7 months.
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Figure 3.7: Projection of normalized at-the-money call option prices: soybeans

the one-factor model predicts higher option values than all of the two-factor models, especially for op-
tions with longer times to maturity. Unlike Figure 3.6, the option premiums predicted by Models 2 and
4 are still growing in the time period investigated (up to 100 months). This is because compared to
the lean hog market, the parameter of speed adjustment in the spot price is much smaller for soybeans
(0.0523 in Model 4 and 0.0220 in Model 2) than for lean hogs (0.6468 in Model 4 and 0.6569 in Model
2). Though it is not as clear as in Figure 3.6, we still can observe that models generalized with mean
reversion (Models 2 and 4) predict lower option value than their nonstationary counterparts (Models 1
and 3). And models that are augmented with seasonality (Models 3 and 4) predict a smaller option price

than those that are not (Models 1 and 2).

3.6.3 Crude oil market

The estimates reported in Table 3.4 show that, unlike agricultural commodities, the long-run mean

of the first component (y;) of the convenience yield in the crude oil market is positive and significant at

the 95 percent level.
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The correlation coefficient between the two factors is large and highly significant. The speed of
mean reversion in spot price in the crude oil market is much lower than in renewable commodity mar-
kets. Compared to the two agricultural commodity markets, seasonality is weak in the nonrenewable
crude oil market. There are four seasonality parameters that are not significantly different from zero
(ﬂy,z,m, Uy 2 sins Uy2 sin» A0 Uy 2 cos), and the magnitude of the significant seasonality parameters is small
compared to the seasonality parameters in the lean hog and soybean markets. The median of total ex-
pected return on the spot commodity (u,) is 0.1461, which is much higher than the total expected return
on the soybean (0.0295) and lean hogs markets (-0.0202).

Although Model 4’s speed of adjustment coefficient in the spot price (k,) is significantly positive,
its median value is small (0.0136) compared to those of the lean hog market (0.6468) and the soybean
market (0.0523). Since seasonality is not strong and the speed of adjustment (k) in the spot price is
low, it has little impact on the models’ prediction on futures and option prices. It is not surprising to
see that none of the common parameters in the four models is significantly different in Table 3.4. We
would also expect a similar term structure of the call option curves implied by the four models, which

is confirmed in Figure 3.8.
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Figure 3.8: Projection of normalized at-the-money call option prices: crude oil
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These results suggest that the Schwartz model works quite well for crude oil. It is clear from Figure
3.8 that all the two-factor models predict similar normalized at-the-money call option premiums. The
one-factor Black’s model predicts a premium similar to the two-factor models when the time to maturity

of the call option is less than eight months.

3.7 Conclusion

We generalize Schwartz’s two-factor model by allowing mean reversion in spot prices, which is a key
feature of agricultural commodity markets. Agricultural commodity markets also exhibit clear seasonal
patterns. We introduce seasonality into our model by adding periodic functions to the parameters asso-
ciated with commodity prices. Closed-form futures and option pricing formulas are derived. We show
that Schwartz’s model is a special case of our model.

Soybean and lean hog futures price data from the CME and crude oil futures data from NYMEX are
employed to estimate the models by means of a Bayesian MCMC algorithm. Estimates for the Schwartz
model are obtained by imposing the corresponding restrictions on our model.

In January 2010, the spot prices of lean hogs were historically high. Our futures curve shows a
market expectation of a reduction in price levels to the market’s estimate of production costs. On the
other hand, when the lean hog spot price was relatively low, as on December 16th, 2002, the term
structure of futures price implied by our model indicates that futures price will increase to the state
independent long-term futures price. The results for soybeans were equally intuitive.

Our option pricing model incorporates mean reversion to long-run production costs that was found
in lean hog and soybean markets, and as a result it provides option premia that are significantly lower
than in the Black or Schwartz models. This is the key finding of our work and it suggests that the
inappropriate use of these other models will result in overpricing of long-term options. And, in fact,
these markets suffer from a lack of liquidity for long-term options.

The Schwartz model was originally applied to the specific circumstances of crude oil futures, and
our results suggest that it is well suited to this market. Clear seasonal patterns were found in agricultural

commodity markets. A version of our option pricing model that incorporates seasonality also shows a
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decrease in the size of options premia.

3.8 Appendix

3.8.1 Appendix A

B'(t,T) = «[B(tT), and
ot T) = —Ko(t)~l3(t,T)—%ﬁT(t,T)Vﬁ(t,T)

with boundary conditions (7,T) = ¢, and a(7,T) = 0.
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3.8.2 Appendix B

The call option formula can be obtained by noting that if In[F (7}, T)] is distributed as a normal random variable with

mean @ (¢, Ty, T) and variance o(¢,T;,T)? (use @ and o2 for short in this section), then

7 1 1 [In(Fp,) - @2
B2 tmaxlry K0} = [ (FTI—K>Wexp{—2[“(T;j] }dln(Fm

In(K)

7 1 1 [In(Fp,)— o)

= /FTI\/271:76:)(p{—2 [f] }dln(FTl)
In(K)
T 1 [In(Fp) - o)
K({()Wexp{ 2{ } dIn(Fr,)

because Fr, > K = In(Fr,) > In(K). But In(Fr,) > In(K) = [In(Fr,) — @]/c > [In(K) — @]/ = [In(K) — @ — 62/2 +

62/2]/c. By equation (3.38), [In(K) — @ — 62/2+ 62 /2] /6 = [In(K) —In(F,) + 62/2] /&, so that

o 2
/ \/271.676)@{—; {W} }dln(FTl) — 1-N[(n(K/F) +6%/2)/0]
In(K)
= N[(In(F/K)-0?/2)/0]. (3.46)
In addition,
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So, combining equation (3.46) and equation (3.47), we get

EZ{max[Fy, - K,0]} = EN[(In(F; /K) + 67 /2) /0] = KN[(In(F;/K) — 6°/2) /).
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CHAPTER 4. Test of Samuelson Hypothesis in Commodity Futures Market: An

Analysis Using Term Structure Models

4.1 Introduction

In an important paper Samuelson (1965) proposes that futures price return volatility will increase as
the contract approaches maturity. Since Samuelson first introduced this hypothesis, many studies have
investigated it from both theoretical and empirical perspectives.

Anderson and Danthine (1983) propose that the pattern will emerge if additional information about
supply and demand flows into the market near maturity. Bessembinder et al. (1996) show that a nec-
essary condition for the hypothesis to exist is the negative co-variation between the underlying asset’s
spot price and net cost of carry. They predict that markets for real assets, rather than financial assets,
are more likely to have spot prices exhibiting mean reversion and are consequently more likely to be
consistent with the Samuelson hypothesis. Their empirical results support such a prediction by finding
strong evidence in agricultural and oil markets and weaker evidence in metals markets. No evidence
of maturity effect is found in financial markets, this is also consistent with their model. Khoury and
Yourougou (1993) investigated six agricultural commodities and found evidence of maturity effect in
all the commodities that they examined. Dusak-Miller (1979) found evidence in support of the hy-
pothesis in live cattle futures and Castelino and Francis (1982) also found support for the hypothesis in
four commodity markets. Duong and Kalev (2008) find that Samuelson effect is absent in gold market.
Galloway and Kolb (1996) also provide evidence for the Samuelson hypothesis in agricultural futures,
but not in precious metals futures. Fama and French (1988) also find that spot prices for gold, platinum,
and silver are not consistently more variable than futures (or forward) prices.

In this chapter we employ the futures pricing model that we derived in Chapter 1 to investigate the

maturity effect in commodity markets. This model starts with the process generating the commodity’s
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spot price and convenience yield. The model predicts that when the Samuelsson hypothesis holds, there
will be a non-linear relationship between volatility and maturity.

The maturity structure of futures return volatility has important implication for option pricing.
Black’s (1976) option model on futures implies that the volatility of the underlying return series is
constant across the time to maturity of the option. If the maturity effect exists, and a trader uses con-
stant volatility to price options, the calculated options prices will be lower than the fair value for short
term options. If traders are aware of the pattern, then the implied volatility will increase as maturity ap-
proaches. Ball and Torous (1986) test this hypothesis and find that for Deutsche mark and sugar futures
the implied volatility increases as time to maturity decreases. However, the evidence from gold market

is mixed. In our study, three different maturity patterns are found which are shown in Figure 4.1.

Non-Linear Maturity Effect

Annejop
1

== No Maturity Effect

— Linear Maturity Effect

>
>

0 Time to Maturity

Figure 4.1: Three different patterns on futures return volatility

The horizontal line reflects the constant volatility assumed in Black’s model. The straight line with
the negative slope is the one found in the previous literature and the curved line emerges from our
theoretical model. It is clear that when the non-linear form exists, the potential for mispricing of near
to maturity options will be greatest.

The.rest-of the-chapter.is organized as follows. We derive the term structure of futures return
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volatility based on the futures pricing model in section 2. Our empirical model is also proposed in
this Section. Section 3 describes the data set that we employ to fit our model. Regression results are
discussed in Section 4. An empirical model incorporating seasonality is proposed and estimated in

section 5. The last section concludes our chapter.

4.2 Term Structure of Futures Return Volatility and Empirical Model

In this section, we use the term structure model of futures prices derived in Chapter 1 to investigate
the Samuelson hypothesis. Unlike the empirical linear regression tests of Samuelson hypothesis in the
literature, our analysis is based on the evolving behavior of the underling commodity’s spot price and
convenience yield. Given our futures pricing formula, it is straightforward to derive the theoretical term
structure of futures price return volatility using Ito’s Lemma. From Chapter 1, we know the futures

pricing formula can be written as:
In(F(z,T)) = o, T)+pi(t, T)x(t) + a1, T)y(1), 4.1

where dx, = (r— 62 /2 — ¢;)dt + 6. dw2(1), dy, = (1, — kyys — Ay )dt + 0,dw? (1), Bi (1, T) = exp(ky(t —

T)),and B,(¢,T) = expklt=T)—explky(1=T)) N, Jet us define time to maturity T =T —t, then (1) =

ke—ky

exp(—k,7), and B(7) = eXp(_k“Q:Z:p<_k)'T>.

Applying Ito’s Lemma to equation (4.1), we obtain the term structure of futures return volatility

implied by Model 4! as follows
o7 (t) = Bi (1)o7 + B3 (2)07 +2pB1 (7)Ba(7) 00 4.2)

One interesting property of equation (4.2) is that volatility is independent of the state variables (x;,
v;) and depends only on time to maturity of the futures contract. It implies that the return volatility is T
dependent but not # dependent. In equation (4.2) the seasonal parameters that we used to model the spot
price trend, do not enter into the term structure of the futures return volatility. So, Model 1 (Model 2)
will imply the same term structure of futures return volatility formula as Model 3 (Model 4). As time
to maturity goes to infinity, if k, and k, are not equal to zero, lim;_,.. fi(7) = 0, and lim;_,e, B2(7) is

equal to zero as well. Consequently, the volatility of futures return converges to zero (lim;_.. 62(7) =0

'Model 4 is defined in Chapter 3.
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). However, if we set the speed of price mean reversion parameter k, equal to zero (as the model set
up in model 3), when time to maturity approaches infinity, the volatility of futures return in this model

converges to:

0, 2p 0,0y
6%(W)=Gf+k%—7pk X 4.3)
y y

The model implied volatility of return is then compared to the historical return volatility calculated
from the historical cross-sectional futures prices data set. As shown in Chapter 1, models ignoring
seasonality overestimate the instantaneous volatility of spot price and convenience yield, which will in
turn overestimate the volatility of futures return. So, only model 3 and 4 are selected to report the model
implied volatility.

Figures 4.2A, 4.2B, and 4.2C demonstrate the volatility of futures return implied by these two mod-
els for the crude oil, lean hog and soybean market, respectively. The model implied volatility is cal-
culated by evaluating equation (4.2) at the median estimated parameter values shown in Table 3.1, 3.2,
and 3.4 in Chapter 3 for lean hog, soybean and crude oil market respectively. The figures also present
the historical volatility of futures return of the contracts used in the estimation of the parameters of the
models. The description of the monthly data set for lean hog, soybean and crude oil market can be
found in the data description section of Chapter 2 and Chapter 3.

It is surprising to see how well Models 3 and 4 fit the historical return volatility calculated from the
crude oil market data from figure 4.2A, especially given the fact that only futures prices were employed
in the Bayesian estimation process, and the volatility of futures return is not an input in the estimation.
The only volatility that enters into the estimation procedure is the volatility of the unobserved state
variables. Model 3 and Model 4 reports almost identical term structure of volatility for the crude oil
market. This is not surprising, because the speed of mean reversion in spot price is found to be very
low (k, = 0.0136) in the crude oil market. Figure 4.2B represents the term structure of volatility on the
lean hog market. The curve implied by Model 4 is close to the historical volatility. However, model 3
predicts a curve that is inconsistent with Samuelson hypothesis and also matches the historical volatility
data poorly.

The lean hog market exhibits the strongest mean reversion in spot price among the markets that we

have investigated. Model 3 ignores this feature and consequently predicts an inaccurate term structure
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of futures return volatility. If we use Schwartz’s model to estimate the futures market where mean

the implied term structure of price return volatility can be inconsistent
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with Samuelson effect.

For lean hog and crude oil market, both the historical data and the model 4 implied curve are consis-
tent with Samuelson hypothesis. More specifically, they tend to agree that the futures return volatility
decrease at a decreasing rate with respect to time to maturity. However, there is significant discrepancy
between the model implied volatility and the historical volatility on the soybean market, as we can see
from figure 4.2C. In this market, the historical relation between time to maturity and volatility is more
linear than the model predicts, although both of them agree with Samuelson hypothesis.

In the rest of this study, we plan to empirically investigate the Samuelson effect using daily futures

prices observed from ten markets. Ideally, our empirical model should be specified as

o (T) = ¢ Bi(t)02 + B3 (1) 02 +2pBi(7)B2(7)0x0y + €. (4.4)

However, this empirical model is not identifiable given futures return volatility and time to maturity
data only. In other words, futures return volatility and time to maturity data are not sufficient to reveal all
the information about speed of mean reversion and instantaneous volatility parameters of the underlying
spot price and convenience yield processes. It is observed that T only exists in the exponential term of
the above equation. It is convenient for us to apply Taylor expansion to the right hand side of equation

(4.4). Then, our empirical model can be written as follows
0r(t) = o+ BT+ Pt + Bt + Pyt + ...+ &, (4.5)

where ¢ is the disturbance term. s are deterministic functions of ky,k,, p, 0, and o;.

When we implement this model with the actual data set, we need to determine the number of Taylor
polynomial terms that need to be included in the empirical analysis. The above regression equation is
run up to 6 Taylor polynomial terms. The one reporting the smallest BIC is selected and reported in this
study. The empirical results are then compared to the most popular single regressor model in literature

that is used to investigate the Samuelson effect listed as follows,
or(t) =a+pBt+e, (4.6)

where € is the disturbance term. This is a simple linear regression of the annualized daily futures return

volatility on the number of years until the contract expires. If the maturity effect does present, we expect
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the coefficient B to be significantly negative. The BIC criterion is selected to compare the performance
of our model with the single regressor model. If our model is more suitable to explain the maturity
effect, we expect that our model will report a substantially lower BIC number.

4.3 Description of the Data

The data set utilized in this study consists of daily futures prices for 4 futures markets (energy, meats,
metals and grains) from four different futures exchanges, including the New York Mercantile Exchange
(NYMEX), the Chicago Mercantile Exchange (CME), the Chicago Board of Trade (CBOT) and Com-
modity Exchange, Inc. (COMEX). The data are recorded by and downloaded from Barchart.com, which
is a leading provider of price quotes on futures and options markets.

Ten commodities are selected from these four futures markets. Crude oil and natural gas is chosen
from energy market. From the meat market, we select lean hog and live cattle. Silver, gold and high
grade copper are obtained from the metal market and soybean, corn and wheat are picked from the grain
market.

For each of the 10 commodities, we pick 100 futures contracts most recently expired prior to August
2011. 2 The futures prices that are long before maturity usually have low open interest and thin trading
volume. Sometimes, settlement committee, rather than market participants, determines the settlement
price. Therefore, these prices are not used for analysis in our study. Suppose the maximum time to
maturity with positive trading volume for commodity “c” is M, days. Then the futures prices that
have time to maturity more than M, days are discarded. The resulting data set for this commodity is a
M. x 100 matrix, with the i, jth element representing the futures price with M, + 1 — i days to maturity
in the jth most recently expired futures contract before August 2011.

The first step of the analysis is to create a measure of volatility to represent the daily return volatility
of contract prices. Many empirical works use single price series of one futures contract and follow
the procedure of Bessembinder et al. (1996) to calculate the futures price return volatility. The daily

futures return volatility is measured by the absolute value of the continuously compounded rate of return

ZFor silver market, the futures contracts that mature in February, April, June, August, October and November are traded
for only about 3 months, while for futures contracts expire in the other months can be traded for more than a year. Similarly, in
the gold market, contracts that expire in January, March, May, July, September and November has maximum time to maturity
around 3 months. These short life span contracts are not included in our data set.
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multiplied by 100. That is,

F
Ony = |log(Fti—’lTT)| % 100 4.7

where F; 7 is the settlement price on day ¢ of a contract expiring at time 7. Since our model suggests

that the volatility is T dependent and not ¢ dependent, we can calculate [og( Ff L) for each of the 100

contracts that we observed. The daily realized volatility is then calculated as the standard deviation of
the 100 daily returns with the same time to maturity (7). Finally, the daily return volatility is annualized

by multiplying the daily volatility by 1/252.3

4.4 Empirical Results

Table 4.1 and 4.2 present the results of the regression analysis for each of the 10 commodities for the
one regressor OLS model and our model respectively. The table reports the coefficient estimates and the
associated standard error, as well as the number of observations. Bayesian information criteria (BIC) is
also reported for both empirical models for the model comparison purpose. The ten commodities that

we are interested in are divided into four markets for discussion in the following subsections.
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4.4.1 Energy Market

Crude oil and natural gas are selected from energy market to investigate the maturity effect and to
compare two empirical models. It is shown in table 4.1 that one regressor OLS regression reports a
significantly negative 8 for both commodities in the energy market. In table 4.1, the model with 3 (4)
regressors reports the minimum BIC for the crude oil (natural gas) market. All the 3 s are significantly
different from zero at the 1% significance level. Both one regressor OLS model and our model are
consistent with existing literature that energy market exhibits strong Samuelson effect. However, our
model is more supported by the historical data set by comparing the BIC statistics reported by two
empirical models. The BIC reported by one (multiple) regressor OLS model is -1908.81 (-2023.06)
and -1451.05 (-1902.53) for crude oil and natural gas market respectively. The smaller the BIC number
indicates the better fitting of the model. It is considered as strong empirical evidence that model A
is preferred to model B, if model A reports a BIC number that is 10 or more units smaller than the
corresponding BIC reported by model B (Kass and Raftery, 1995). In our case, the difference is more
than one hundred. So, we have the conclusive evidence that maturity effect exist in the energy market,
and the futures return volatility decreases at a nonconstant rate as time to maturity increases.

Figure 4.3 demonstrates the historical futures return volatility data and the lines fitted by one re-
gressor OLS model and our model. It is clear that volatility declines with contract horizon, resulting
in the Samuelson effect for both commodities. Our model fits the historical data precisely. However,
the one regressor OLS model underestimates the volatility with short and long time to maturity and

overestimates the volatility with medium time to maturity.

4.4.2 Livestock Market

For the livestock market, the story is very similar to the energy market. The one regressor OLS
model also reports significantly negative f3, indicating the existence of maturity effect. Our model
with 4 (2) regressors yields the smallest BIC in the lean hog market (cattle market). BIC statistics also
suggest that our model outperforms the one regressor linear model in terms of fitting historical volatility
data.

Similar to figure 4.3, figure 4.4 shows the historical and model fitted futures return volatility on
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Figure 4.3A. Crude Oil

o0 -
< L] Historical Data
®

> o o©° o Our Model
= | e
g0 oo “". i ° ————One Regressor OL$
S b
cm4 .9
5 o=
g
=]
RN L[] (J
o ° 0'.0 o ® o e [ ‘.?O.’.g.."t*‘b

n | [ )

F! T T T T T

0 5 1 15 2
Time to Maturity (Years)
Figure 4.3B.Natural Gas
0
) ° Historical Data
°

2 ° Our Model
E“’ 1° . 6 o ————One Regressor OIS
>
£
3
@
14
%]
g
=
5
s

Time to Maturity (Years)

Figure 4.3: Model fitted and historical volatility of futures return on energy market

the livestock market. It provides direct evidence of Samuelson hypothesis that the closer-to-maturity
contract is more volatile than those farther to maturity on the livestock market, and our model is more

suitable to capture the curvature of the historical futures return volatility on the livestock market.

4.4.3 Metal Market

Most empirical studies find little or no support for Samuelson hypothesis on the metal market,
especially for precious metals (Duong and Kalev, 2008; Galloway and Kolb, 1996). However, most
of these studies cannot offer an explanation why Samuelson effect does not exist in the precious metal
market.

From the regression results, we can see that both one regressor OLS model and our model confirm
that maturity effect exists in the high grade copper market. We also get strong empirical evidence that

our model is_preferred to the one regressor linear model. However, the maturity effect is absent from
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Figure 4.4A. Lean Hog
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Figure 4.4: Model fitted and historical volatility of futures return on livestock market

the precious metals like gold and silver, because the parameter 8 (B, 8,) is not significantly different
from zero in the one regressor (our) model. Consequently, both models yield roughly the same number
of BIC, which indicates that both models have the same explanation power to the data set. Figure 4.5A
and 4.5B show that the fitted line by the one regressor model overlaps with the line fitted by our model.

The empirical results for silver and gold market at the first glance do seem to be in line with our
theoretical model. Cassasus and Collin-Dufresne (2005) developed a three-factor futures model for
precious metals. Their model assumes convenience yield is a linear function of spot prices and interest
rates. This induces mean-reversion in prices under the risk-neutral measure. These authors find that for
precious metal convenience yield is small and stable. If this is true, then o, in our model is close to
zero. These authors also find that convenience yield dependence on spot price on gold and silver market
is negligible (k, is close to zero). If we insert o, = 0, and k, = 0 into our theoretical model (equation

4.2), it ends up with Og () being a constant. If the commodity spot price does not exhibit mean reversion
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Figure 4.5A.Silver
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Figure 4.5: Model fitted and historical volatility of futures return on metal market

and its convenience yield is stable, the futures prices return volatility will be the same as the spot price

return volatility. In this case, Samuelson effect will not be observed from the underlying market.

4.4.4 Grain Market

Most empirical studies agree that maturity effect exists on the grain markets. This effect is also
significant in our analysis, since 3 is significantly negative in the one regressor OLS model. However,
our model almost has the same explanation power as the one regressor OLS model, since the difference
of BIC between the two models is small (less than 10). It is also shown in figure 4.5 that the line fitted

by our model almost overlaps with line fitted by the one regressor OLS model in all three commodities.
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This is inconsistent with our theoretical model, because our theoretical model suggests that if maturity

effect exists, this effect is generally nonlinear.

Figure 4.6A. Soybean
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Figure 4.6: Model fitted and historical volatility of futures return on grain market

Anderson (1985) studied nine agricultural commodities and found support for the maturity effect,

but concluded it is secondary to the effect of seasonality. We also explicitly model the seasonality

feature of the commodity spot price, by allowing the drift term of the spot price process to be a periodic

function of time. In terms of modeling futures price, our model predicts satisfactory results as we can

see from Chapter 1. However, these seasonal parameters do not enter into the term structure of futures

return volatility. Hence, our theoretical model cannot capture the seasonality effect in the futures return
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volatility. The seasonality effect on the futures return volatility is examined in details in the next section.

4.5 Seasonality Effect on the Futures Return Volatility

More recently, Smith (2005) studies simultaneously traded corn futures contracts using a partially
overlapping time series (POTS) model and finds support for the Samuelson effect. Smith also finds
that futures return volatility exhibits strong seasonality and nonlinearity in the corn market. Karali and
Thurman (2010) also find strong evidence of Samuelson effects and systematic seasonal components
with volatility increasing prior to harvest times. In this section, we propose a new empirical model to
answer the following questions. Does seasonality effect exist on the markets that we investigate? How
the seasonality effects affect the term structure of futures return volatility? What causes the seasonality
effect in the underlying market?

In order to investigate the seasonality effect, we recalculate historical volatility by grouping the
contracts with same maturity month together in the way that described in the data description section.
By doing so, the futures prices with same time to maturity will also be associated with the same calendar
month in one subgroup. Grouping the contracts by their maturity months yields much lesser number of
observations in the subgroup. So, we use the absolute value of the continuously compounded rate of
return multiplied by 100 as our volatility measure. This calculation is applied to all the contracts in our
sample. Then, we take the average of the volatility in the same subgroup (contracts that matured in the
same month) to get the volatility measure that we use for the following analysis.

Due to seasonality, the futures return volatility is not only time to maturity T dependent but also
calendar time ¢ dependent. So, to investigate the maturity effect and seasonality effect in the futures

return volatility, the following empirical model is proposed,

aglS

or(t,7) = o+ | Y [UncosCos(2ht /252) + uy sinSin(27ht /252)] | exp(67)

h=1

+B1T+ Bt + .t (4.8)

where ¢ is defined as the number of trading days since January 1st in one calendar year. 252 is the
number of trading days in one calendar year. The sine and cosine functions are employed to capture
the seasonality effect. The seasonality effect is multiplied by exp(67) to allow for the magnitude of

seasonality-effect.to.be.dependent on the time to maturity. If 0 is estimated to be negative, seasonality
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effect is weaker for the contracts with longer time to maturity, and vice versa. Again the number of

polynomial terms and seasonality terms to be included in the analysis is determined by BIC criteria.

The one that yields minimum BIC is selected and reported in the paper.

This model is implemented for all the ten markets using the data set separated by maturity month.

Parameter estimates are reported in Table 4.3.

Table 4.3: Seasonality Effect on Futures Return Volatility

Soybean Corn Wheat Crude Oil Natural Gas Lean Hog Cattle Silver Gold Copper
o 1.1491%*  1.2437%*  1.4615%*  1.7855%* 2.7837** 1.0854**  0.7477**  1.2603*%* 0.7226%*  1.2514%*
(0.0110)  (0.0117) (0.0153)  (0.0200) (0.0208) (0.0191) (0.0118)  (0.0132)  (0.0085)  (0.0159)
Ul cos -0.1747%%  -0.2944** -0.0881**  0.1533** 0.4003**  -0.0602%* 0.0359%%*
(0.0137)  (0.0170) (0.0180)  (0.0119) (0.0238) 0.0117) . (0.0129)
U sin  -0.0446%* -0.0381**  0.0453**  0.0416**  -0.2958**  -0.0591%** 0.0380%*
(0.0081)  (0.0095) (0.0133)  (0.0076) (0.0220) 0.0117) (0.0165)
U cos  0.0453*%*  0.0631%*  -0.0716%* 0.2728%**
(0.0080)  (0.0099) (0.0161) . (0.0216) . .
Uy sin  0.0467%% -0.0563%* -0.0271%* -0.0297*
(0.0082) . . (0.0080) . . (0.0075) . . (0.0160)
6 0.0345 -0.2092* -0.1295  -0.3001**  -2.910%* -0.2901 0.3517 0.3479 -0.1054 0.3314
(0.1102)  (0.0835) (0.3109)  (0.0819) (0.1994) (0.2965) (0.3989)  (0.4652) (0.2996)  (0.3245)
Bi -0.2200%*  -0.3174%* -0.4217**% -2.1921*%*  -4.4620**  -0.5033** -0.3711*%*%  -0.0455 -0.0170  -0.0351%*
(0.1630)  (0.0160) (0.0247)  (0.1481) (0.1509) (0.1517) (0.0933)  (0.0160)  (0.0104)  (0.0101)
B2 2.8556%*%  4.4986%* = -2.6347**  -0.3909*
(0.3225) (0.3217) (0.3227) (0.1986)
B3 -1.8068**  -2.2061%*%  1.5899%*  (0.3872%%*
(0.2597) (0.2536) (0.1944) (0.1196)
Ba 0.4241%%* 0.4214%%*
. . (0.691) (0.0660) . . . . .
Nobs 2072 1610 1360 5592 5736 1904 1638 2202 2676 3924
BIC 113.82 -88.29 401.30 2338.23 2963.50 -662.62 -2327.47  1041.28  -1079.03 608.16

Note: Standard errors in parentheses. * indicates significance at 5% level.

** indicates significance at 1% level.

Table 4.3 shows that seasonality effect is significant in all the gain markets. Three (four) significant

seasonal parameters are selected by the data set in the soybean market (corn and wheat market).

In the grain market, the information about the production of grain arrives at a nonconstant rate

throughout a year. Consequently, the futures return volatility driven by information exhibits season-

ality. The parameter 0 is found to be significantly negative on the corn market and insignificant on

the soybean and wheat market, which indicates that the magnitude of seasonality effect decreases with

time to maturity on the corn market but remains about the same in the other two markets. Maturity

effect still exists on the grain market, even if we separate the seasonality effect from the futures return

volatility, since B is significantly negative on all the grain markets investigated. However, excluding
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the seasonality effect, the maturity effect is still linearly decreasing with time to maturity.

The seasonality effect in the grain market is plotted in figure 4.7.
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Figure 4.7: Seasonality effect in the grain market

Figure 4.7 plots the seasonal cycles implied by the estimated periodic coefficients. It reveals sub-
stantial seasonality in futures return volatility in grain market. Corn and soybean market have similar
seasonal pattern on their futures return volatility. It is because these two crops have similar planting and
harvesting period. Their seasonal effect is quite different from that revealed in the wheat market. This
is true because wheat has a different planting and harvesting period. In the corn and soybean market,
volatility peaks during the summer season, when information on changing weather conditions has the
most direct impact on grain supply. The harvest resolves much of the uncertainty about the supply of
soybean and corn, so volatility decreases after the harvest season.

The seasonality of futures return volatility is also significant in the energy market. As we can see
from Table 4.3, three seasonal parameters are included in the empirical analysis that yields minimum
BIC. The seasonal effect decreases with time to maturity in the energy market, since 6 is found to be
significantly negative in the both markets. The speed of decreasing is especially fast in the natural gas

market due to the large negative value of 0. The seasonality effect is expected to be leveled off by half

—
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Figure 4.8: Seasonality effect in the energy market

The seasonality effect on the natural gas market is mainly from the demand side. As we can see
from figure 4.8 the effect peaks during the winter season, when the weather condition reveals the most
information about the demand of natural gas. A colder than normal Winter results in much higher
natural gas demand, higher gas prices, while a warmer than normal winter induces lesser demand,
lower gas price. This results in additional price volatility for the winter season contingent on warmer
or cooler weather. However, weather does not have the long-term impact on natural gas’ futures price
return volatility, due to the large and significantly negative 0. This is because the demand revealed in
the current winter has little impact on the demand surprise for the following months or the next winter.

As can be seen in Figure 4.8 crude oil futures return volatility also peaks in the winter season.
Compared to the natural gas market, the magnitude of the seasonal effect in the crude oil market is
small. While there are reasons to expect higher natural gas volatility in the winter season, it is less
obvious on crude oil market. According to Fleming, Kirby and Ostdiek (2006), crude oil prices are not
typically weather sensitive because over 90% of U.S. oil consumption is for transportation and industrial
uses which are not sensitive to the weather. Therefore, the issue concerning a seasonal pattern in crude
oil futures return volatility is subject to empirical evidence.

Figure 4.9 and 4.10 show seasonality effect on the futures return volatility in meat and metal markets.

While there is only one seasonal term that is selected by the criteria of minimum BIC, the magnitude
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Figure 4.9: Seasonality effect in the meat market
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Figure 4.10: Seasonality effect in the metal market

of seasonality effect is also relatively small compared to the energy and grain market. The seasonal
effect is statistically significant suggested by the data. However, due to its small magnitude it has little
economic importance. After we incorporate the seasonality effect into analysis, the maturity effect is

still absent from the gold and silver market.
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4.6 Conclusion

In this chapter, we derive a term structure model of futures return volatility based on the futures
pricing model that we proposed in Chapter 1. This model is then used to test the Samuelson hypothesis
in the commodity futures market. The data set that we employed to test the hypothesis is organized
in a different way from other researchers do in exploring the maturity effect. Our model suggests that
for a given commodity market the volatility depends only on time to maturity. Therefore, we group
100 most recently expired contracts and calculate the return volatility on the futures prices with same
time to maturity, instead of using single contract price to measure the return volatility. Compared to the
existing models in the literature, our model has the following improvements. First, our model suggests
that if the maturity effect exists, this effect is generally nonlinear. This is confirmed by the data set
that we observed from energy and livestock market. Second, our model can also be utilized to explain
why the maturity effect does not exist in the precious metal market. However, there is no significant
improvement on our model in explaining structure of futures return volatility in the grain market, where
the maturity effect is linear even if we control for seasonal effects.

We propose another empirical model to separate the seasonal and maturity effects. We find strong
empirical evidence to support the seasonal pattern in the futures return volatility on the grain market
and energy market. The seasonality effect in grain markets (energy markets) is mainly caused by the
uncertainty revealed from the production side (demand side). According to our data set, a seasonal
effect also exists in the metal and meat market. However, its magnitude is much smaller compared to
the energy and grain market. The maturity effect still exists when we include the seasonal effect, in all

the markets except precious metals.
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CHAPTER 5. SUMMARY AND DISCUSSION

In the preceding chapters, we propose a two-factor affine term structure model for the purpose of
pricing commodity futures and options contracts in Chapter 2 and Chapter 3 respectively. Our model
captures two key features on renewable commodities markets, price mean reversion and seasonality.
Maturity effect and seasonality effect of futures return volatility is analyzed in Chapter 4. I summarize

the main contributions of my dissertation in the following section.

5.1 Summary of Methods and Contributions

With the purpose of developing a method to estimate the long-term futures curve for agricultural
futures, we generalize Schwartzs two-factor model, in Chapter 2, by allowing for both mean reversion
in spot prices and seasonality. Given that one of the key issues in the development of longer-term
futures is the confidence market players have in constructing long-term futures curves, a Bayesian
MCMC algorithm is developed to estimate our model. Monthly lean hog and soybean futures data
are employed to fit our model using the Bayesian algorithm. According to the the Bayesian deviance
information criterion, two model innovations (price mean reversion and seasonality) are highly favored
by the actual data set that we observed from the futures markets. The proposed theoretical model and
empirical methods also provide a streamlined way to produce credible intervals for the projections of
long-term futures curves, which are the key information needed for successfully construct the swap
contract.

Based on the same affine term structure model, closed-form option pricing formulas are derived in
Chapter 3. Our option pricing model incorporates mean reversion to long-run production costs that was
found in lean hog and soybean markets, and as a result it provides option premia that are significantly

lower than in the Black or Schwartz models. This is the key finding of Chapter 3 and it suggests that
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the inappropriate use of these other models will result in overpricing of long-term options in renewable
commodity markets. And, in fact, these markets suffer from a lack of trading for long-term options.
Clear seasonal patterns are also found in agricultural commodity markets. Our option pricing model
that incorporates seasonality also shows a decrease in the size of options premia.

In Chapter 4, we derive a term structure model of futures return volatility based on the futures pricing
model that we proposed in Chapter 2. This model is employed to test the Samuelson hypothesis in the
commodity futures market. Our model suggests that for a given commodity market the futures return
volatility depends only on time to maturity. Therefore, we group 100 most recently expired contracts
and calculate the return volatility on the futures prices with same time to maturity, instead of using
single contract price to measure the return volatility. Compared to the existing models in the literature,
our model has the following improvements. First, our model suggests that if the maturity effect exists,
this effect is generally nonlinear. This is confirmed by the data set that we observed from energy and
livestock market. Second, our theoretical model can also be utilized to explain why the maturity effect
does not exist in certain markets such as silver and gold. Seasonal effect is also modeled and tested in
our empirical model. It is found that seasonal effect is significant in grain and energy market and week
in the metal and meat market. However, the maturity effect remains largely unaltered even after we

control for seasonal effect in the futures return volatility.
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